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Abstract

We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue frame-
work. Current systems for spoken dialogue rely on pipelines of independent components,
namely voice activity detection, speech recognition, textual dialogue and text-to-speech.
Such frameworks cannot emulate the experience of real conversations. First, their complex-
ity induces a latency of several seconds between interactions. Second, text being the inter-
mediate modality for dialogue, non-linguistic information that modifies meaning— such as
emotion or non-speech sounds— is lost in the interaction. Finally, they rely on a segmenta-
tion into speaker turns, which does not take into account overlapping speech, interruptions
and interjections. Moshi solves these independent issues altogether by casting spoken dia-
logue as speech-to-speech generation. Starting from a text language model backbone, Moshi
generates speech as tokens from the residual quantizer of a neural audio codec, while model-
ing separately its own speech and that of the user into parallel streams. This allows for the
removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics.
We moreover extend the hierarchical semantic-to-acoustic token generation of previous work
to first predict time-aligned text tokens as a prefix to audio tokens. Not only this “Inner
Monologue” method significantly improves the linguistic quality of generated speech, but we
also illustrate how it can provide streaming speech recognition and text-to-speech. Our re-
sulting model is the first real-time full-duplex spoken large language model, with a theoret-
ical latency of 160ms, 200ms in practice, and is available at github.com/kyutai-labs/moshi.

Keywords: speech, text, multimodal, foundation, spoken dialogue
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1 Introduction

Voice has provided a convenient interface to early conversational systems, from Alexa1 to
Siri2 and Google Assistant.3 In this context, a “wake word” spoken by the user typically
triggers an automatic speech recognition (ASR) system which transcribes the subsequent
user’s request. Then, a natural language understanding (NLU) pipeline converts this query
to a structured format used to produce a text answer through natural language genera-
tion (NLG). Eventually, a text-to-speech (TTS) system tells the answer back to the user.
While this process can handle short, constrained interactions (e.g. triggering an action or
retrieving a fact), the rise of large language models (LLMs) (Brown et al., 2020; Hoffmann
et al., 2022; Touvron et al., 2023a) has called for a consequent extension of voice interfaces to
multi-turn, open-ended conversations. A solution to this challenge is handling the NLU and
NLG with an LLM, while the ASR and TTS provide the voice interface during the user’s
and the system’s turn respectively (Llama, 2024). This framework supports the current
generation of spoken dialogue systems such as Gemini (Gemini et al., 2023) or ChatGPT.4

Yet, the experience offered by these interfaces remains far from natural conversations.
First, latency compounds along the many components of these pipelines, resulting in a
typical global latency of several seconds. This is unlike natural conversations which demon-
strate response times of a few hundred milliseconds. Second, as language understanding
and generation happens in the textual domain, any non-written information is ignored
by the model. This goes from paralinguistic information, such as emotion and accent, to
non-speech audio, such as surrounding acoustic events. Finally, these models remain fun-
damentally turn-based, assuming that dialogue is a sequence of well-defined single-speaker
segments. While this paradigm is suited to text dialogue, it falls short in modeling aspects
of spoken conversations such as interruptions, overlapping speech— which amounts for 10 to
20% of spoken time (Çetin and Shriberg, 2006) —and backchanneling (i.e. non-interrupting
interjections such as “OK” or “I see”).

In this work we introduce Moshi, a speech-text foundation model and real-time spoken
dialogue system that aims at solving the aforementioned limitations: latency, textual infor-
mation bottleneck and turn-based modeling. Moshi augments a text LLM backbone with
a smaller audio language model (Borsos et al., 2022; Yang et al., 2023) that ingests and
predicts discrete audio units. This removes the information bottleneck of text by under-
standing inputs and generating outputs directly in the audio domain, while benefiting from
the knowledge and reasoning abilities of the underlying text LLM. We extend previous work
on audio language models and design a streaming, hierarchical architecture, with a theo-
retical latency of 160ms—lower than the 230ms average in natural conversations measured
over 10 languages (Stivers et al., 2009). We furthermore introduce the first multi-stream
audio language model, i.e. a model that explicitly processes the input and output audio
streams jointly into two autoregressive token streams. This altogether removes the concept
of speaker turn and thus allows training the model on natural conversations with arbitrary
dynamics including overlap and interruptions. Our resulting model is the first full-duplex—

1. https://www.alexa.com
2. https://www.apple.com/siri
3. https://assistant.google.com/
4. https://openai.com/index/chatgpt-can-now-see-hear-and-speak/
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it always listens and always generates sound, either speech or silence—real-time conversa-
tional LLM. We summarize our contributions below:

• We present Helium, a 7B-parameter text LLM that we pretrain on 2.1T tokens of
public English data. Section 3.2 describes the architecture and training of the model,
while Section 4.1 provides details on the pretraining data collection and filtering.

• We train Mimi, a neural audio codec (Zeghidour et al., 2022; Défossez et al., 2023) that
converts audio into the discrete tokens predicted by Moshi and back, using residual
vector quantization (RVQ). Audio language models typically combine such acoustic to-
kens with semantic tokens from a self-supervised speech model as it is necessary to pro-
duce intelligible speech in absence of text conditioning (Borsos et al., 2022). We rather
extend the approach of Zhang et al. (2024b) by distilling semantic information into the
first level of acoustic tokens and introduce improved training tricks. Section 3.3 de-
scribes the architecture and training of Mimi while Section 5.2 details ablation studies.

• We propose Moshi, a new architecture for audio language modeling, which combines
Helium with a smaller Transformer (Vaswani et al., 2017) model to predict audio to-
kens in a hierarchical and streaming fashion. We show how challenging it is for such
unconditioned audio language models to generate intelligible speech, and we pro-
vide solutions that outperform the intelligibility and audio quality of non-streaming
models while generating audio in a streaming fashion. We furthermore extend this ar-
chitecture to model several audio streams in parallel, allowing for a conceptually and
practically simple handling of full-duplex dialogues with arbitrary dynamics. Section
3.4 describes this architecture.

• In Section 3.4.4, we introduce Inner Monologue, a new training and inference setup
for audio language models that significantly improves the factuality and linguistic
quality of generated speech by predicting time-aligned text tokens before audio to-
kens. Moshi is a speech-to-speech model as it allows reasoning about non-linguistic
information, both from the user audio and from Moshi’s audio. Yet, this is not in-
compatible with Moshi producing text along its speech output. Based on the past
observation (Borsos et al., 2022; Zhang et al., 2024b) that coarse-to-fine generation
(from semantic to acoustic tokens) is critical to generating consistent speech, we ex-
tend this hierarchy to using text tokens as a per-timestep prefix to the semantic token.
Our experiments show that not only this drastically improves the length and quality
of generated speech, but we also show how forcing a delay between text and audio
tokens allows deriving streaming ASR and streaming TTS from a Moshi model.

• We evaluate all components of Moshi along several axes, including text understanding,
speech intelligibility and consistency, audio quality and spoken question answering.
Our experiments, reported in Section 5, show that our model is state of the art among
existing speech-text models for speech modeling and spoken question answering while
being streaming compatible and able to model several minutes of context (5min in
our experiments).

We encourage the reader to talk to Moshi using our web demo.5

5. https://moshi.chat/
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2 Related Work

Audio Language Modeling. Early developments in speech foundation models have
improved speech understanding across many discriminative tasks, from automatic speech
recognition (ASR) (Baevski et al., 2020; Radford et al., 2023; Zhang et al., 2023b) to speaker
verification (Chen et al., 2022) and speech classification (Yang et al., 2021). A key factor
in this development is self-supervised learning (Hsu et al., 2021; Baevski et al., 2020; Chen
et al., 2022) which allows learning generic, discriminative speech representations. As these
speech understanding models build on previous work done on masked language modeling
for text (Devlin et al., 2019), generative text pretraining (Radford et al., 2018) has similarly
inspired a large family of speech generation models. In particular, Lakhotia et al. (2021)
propose quantizing aforementioned self-supervised representations. The resulting discrete
audio tokens represent a speech segment as a sequence of categorical variables, thus casting
speech generation as a language modeling task. AudioLM (Borsos et al., 2022) furthermore
combines these semantic tokens with acoustic tokens from a neural audio codec (Zeghidour
et al., 2022), which allows for modeling arbitrary voices, recording conditions and non-speech
sounds. These audio language models have redefined the state of the art in speech gener-
ation, from text-to-speech (Wang et al., 2023; Kharitonov et al., 2023) to speech-to-speech
translation (Rubenstein et al., 2023; Reid et al., 2024) and speech enhancement (Yang et al.,
2023). Beyond these supervised tasks, a parallel line of work has explored training and scal-
ing unsupervised audio-only models, trained for autoregressive speech generation (Dunbar
et al., 2021; Lakhotia et al., 2021; Borsos et al., 2022). The abilities of these models have
progressively expanded, from generating short sentences in a single speaker voice (Lakhotia
et al., 2021) to producing meaningful and consistent speech continuations across dozens
of seconds in arbitrary voices and conditions (Borsos et al., 2022), thanks to a hierarchi-
cal modeling of semantic and acoustic tokens. A main challenge is that audio requires the
modeling of long sequences, up to a few minutes, to produce meaningful and exploitable out-
puts. However, latent representations for audio are typically less compact than equivalent
representations for text. Thus, discrete representations from neural audio codecs require
multiple predictions per timestep when modeled autoregressively. (Liu et al., 2023b) and
(Evans et al., 2024) use latent diffusion (Ho et al., 2020) for general audio and music model-
ing to alleviate the need for hierarchical discrete tokens. However, these methods cannot be
used in a streaming fashion, and it is unclear whether they could generate consistent speech.
Copet et al. (2023) instead show that the number of auto-regressive steps can be reduced by
introducing a delay between the different levels of tokens, and performing parallel prediction
over them. Inspired by the RQ-Transformer method by Lee et al. (2022) and the hierarchi-
cal MegaByte transformer model (Yu et al., 2024), Yang et al. (2023) and Zhu et al. (2024)
leverage a smaller nested transformer to model the different tokens at a single time step. In
this work, we extend these previous works to push the limits of autoregressive speech gener-
ation by proposing a scalable hierarchical modeling of audio tokens which can handle several
minutes of context while generating audio in real time. Still, while speech-only models learn
linguistic structure—lexicon, syntax, semantics— from raw speech (Dunbar et al., 2021),
they typically demonstrate poor-to-nonexistent factual knowledge and reasoning abilities.
This has led to the development of speech-text models, intended to combine the knowledge
and reasoning abilities of text models with the generative power of audio models.
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Speech-text Models. Such models typically start from a pretrained text language model
and either finetune it to predict audio (Hassid et al., 2023), or propose a speech-text finetun-
ing task (Rubenstein et al., 2023; Maiti et al., 2023; Nachmani et al., 2024; Nguyen et al.,
2024; Mitsui et al., 2024; Zhang et al., 2024a): For instance, AudioPALM (Rubenstein
et al., 2023) starts from a pretrained PALM (Chowdhery et al., 2022) model, and extends
its text vocabulary with semantic audio tokens. Then, the model is trained for a mixture of
speech-text tasks, including TTS, ASR and speech-to-speech translation. VoxTLM (Maiti
et al., 2023) adopts a similar approach for TTS and ASR. While these models are trained
in a supervised fashion with specific input and output sequences, Spirit-LM (Nguyen et al.,
2024) uses temporal alignment between speech and its transcript to perform modality switch
(from speech tokens to text tokens, or conversely) inside a sequence. This allows the model
to learn consistent internal representations of language regardless of it being represented as
text or speech, as measured through commonsense evaluation. Another approach, adopted
by Spectron (Nachmani et al., 2024), SpeechGPT (Zhang et al., 2023a) and PSLM (Mitsui
et al., 2024), combines speech and text in a hierarchical manner rather than as interchange-
able representations. Similar to how AudioLM (Borsos et al., 2022) decomposes speech gen-
eration into predicting semantic tokens and then acoustic tokens, Spectron and SpeechGPT
use a “Chain-of-Modality” and first produce an utterance as text tokens, subsequently used
as a prefix to generate speech. This allows guiding speech generation with the output of an
underlying text LLM, however this is fundamentally incompatible with live interactions as
the model needs to produce an entire answer as text before it starts speaking. PSLM allevi-
ates this limitation by modeling text and speech tokens in parallel. In this work, we propose
Inner Monologue as a main architectural and training component to combine aligned text
and speech data. Inner Monologue decomposes speech into a chain of text, semantic and
acoustic tokens, and predicts this structured sequence in a hierarchical manner. Unlike
Spirit-LM, this allows representing all utterances both as text and speech, rather than
switching between modalities; In addition, the integration of acoustic tokens into the same
generative model enables generating arbitrary voices and conditions, rather than a single
speaker. Besides, this hierarchical modeling described in Section 3.4.4 allows decompos-
ing the generation task without increasing the sequence length of the Transformer (Vaswani
et al., 2017) outputs, unlike Chain-of-Modality, while benefiting from producing text a prefix
to audio tokens rather than in parallel like PSLM. Moreover, Inner Monologue decomposes
speech on a per-frame basis, which means that each prediction step outputs a speech frame.
This is unlike Spectron and SpeechGPT which require generating a complete sequence as
text before generating audio tokens, and this makes Moshi compatible with real-time gen-
eration. Moreover, we show in Section 3.4.4 how Inner Monologue, when combined with a
delay between token types, allows deriving streaming TTS and ASR systems from Moshi.
Finally, while Spectron, SpeechGPT and PSLM model both user and system speech and
text tokens into a single stream, which requires properly segmented turns, Moshi benefits
from a novel multi-stream architectures which removes the concept of speaker turns and
allows for modeling any type of overlap, interruptions and interjections.

Spoken Dialogue Models. Spoken dialogue is one of the less explored tasks in speech
generation, as it requires addressing several challenges: 1) The model should run in real
time and allow for long conversations in full-duplex—the model always listens and can speak
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at any moment; 2) it should be speech-to-speech to handle paralinguistic communication;
3) it should display knowledge and reasoning abilities that make it amenable to helpful and
enjoyable conversations. Spectron benefits from its underlying text LLM (as measured by
spoken question answering), however it is not compatible with real-time generation due to
Chain-of-Modality. PSLM proposes generating speech and text tokens in parallel to reduce
this latency, however it reduces the quality of answers, and the model still relies on ASR,
which removes paralinguistic information. More importantly, these models cannot handle
full-duplex communication, where there is no boundary between speaker turns, as any side
of the conversation can be active at any time. An attempt at modeling these dynamics has
been proposed by Wang et al. (2024), with an ASR system running in parallel to a text
generator that feeds into a streaming TTS. While this allows modeling more complex sce-
narios than previous approaches, it still relies on a cascaded pipeline and models both the
user’s and the system’s speech into a single token stream, which is challenging in presence
of significant overlap. The only previous full-duplex dialogue system is dGSLM (Nguyen
et al., 2023), which models user and system speech as separate audio token streams and pro-
poses a Siamese architecture to process both streams jointly. While dGSLM is full-duplex,
it remains a proof-of-concept: it does not run in an online fashion, it does not benefit from
the knowledge of a text language model, and it does not model acoustic information as it
only models semantic tokens. Moshi addresses these limitations altogether: by modeling
two streams of semantic and acoustic tokens hierarchically, Moshi is full duplex and can
exploit all the information from the user (linguistic and non-linguistic) while producing
speech in real time. Thanks to text pretraining and Inner Monologue, Moshi benefits from
the knowledge of its Helium backbone. Finally, as the model produces acoustic tokens along
with text and semantic tokens, it can generate an arbitrary range of emotions, voices and
acoustic conditions. To the best of our knowledge, Moshi is the first audio language model
that successfully addresses the many aforementioned challenges of spoken dialogue.

3 Model

3.1 Overview

Moshi is a multi-stream speech-to-speech Transformer model, which allows for full-duplex
spoken dialogue with a user thanks to an innovative architecture summarized in Figure 1.
Moshi is built on top of Helium, a text LLM which we build from scratch (Section 3.2),
relying on high-quality text data to provide strong reasoning abilities to the model. We also
propose Inner Monologue (Section 3.4.4), a training and inference procedure in which we
jointly model text and audio tokens. This allows the model to fully exploit the knowledge
imparted from the text modality, while remaining a speech-to-speech system. To enable
real-time dialogue, we also design Moshi as a multi-stream architecture from the get-go
(Section 3.4.3): The model is able to both speak and listen to the user at the same time,
and does not need to explicitly model speaker turns. In addition, to capture the input user
audio and output Moshi’s voice with high quality and in an efficient manner, we propose
Mimi (Section 3.3), a neural audio codec combining semantic and acoustic information
into a single tokenizer by using residual vector quantization and knowledge distillation. To
jointly model the audio streams from Moshi and the user, as well as Moshi’s text tokens, we
rely on a Depth Transformer compatible with streaming inference (Sections 3.4.1, 3.4.2).

6



Moshi: a speech-text foundation model for real-time dialogue

Figure 1: Overview of Moshi. Moshi is a speech-text foundation model which enables
real-time spoken dialogue. The main components of Moshi’s architecture are: a bespoke
text language model backbone (Helium, see Section 3.2); a neural audio codec with residual
vector quantization and with semantic knowledge distilled from a self-supervised speech
model (Mimi, Section 3.3); the streaming, hierarchical generation of semantic and acoustic
tokens for both the user and Moshi, along with time-aligned text tokens for Moshi when
using Inner Monologue (Section 3.4).

In this section, we further detail each of these components. We then describe the training
datasets and the different training phases we used to train Moshi in Section 4. Finally, in
Section 5, we report thorough evaluation results on Moshi’s abilities, both linguistic and
acoustic, as well as ablation experiments on its main components, while Section 6 provides
analyses on the safety of our system.

3.2 The Helium Text Language Model

3.2.1 Architecture

Helium is an autoregressive language model, based on the Transformer architecture (Vaswani
et al., 2017). Following previous work in this area, we make the following changes to the
original architecture: First, we use RMS normalization (Zhang and Sennrich, 2019) at the
input of the attention blocks, the feed-forward blocks and the output linear layer of the
model. We use rotation positional embeddings (Su et al., 2024, RoPE), a context length
of 4,096 tokens and FlashAttention (Dao et al., 2022) for efficient training. Finally, we
change the architecture of the feed-forward blocks and use Gated Linear Units (Shazeer,
2020), with the SiLU activation as a gating function (Hendrycks and Gimpel, 2016b). Our
tokenizer is based on the unigram model from SentencePiece (Kudo and Richardson, 2018),
and contains 32,000 elements mostly targeting English. We split all numbers into single
digits, and use byte-backoff to ensure that our tokenizer does not lose information. We
train the model with the AdamW (Loshchilov and Hutter, 2017) optimizer, with a fixed
learning rate followed by a cosine learning rate decay (Loshchilov and Hutter, 2016).
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Table 1: Models’ hyper-parameters. Hyper-parameters for the architecture and training
of our 7B-parameter Helium language model and of Moshi, our speech-text dialogue model.
The training of Moshi goes through 4 phases: Pre-training on unsupervised data (with
Temporal Transformer initialized from Helium); Post-training with simulated multi-stream
based on diarization; Fine-tuning on the Fisher dataset (Cieri et al., 2004) to gain its
fully duplex capabilities; Instruction fine-tuning on a custom dataset built from synthetic
interaction scripts. During the pre-training phase, we keep training half of the time on full
text batches from the same dataset as used for Helium, using a separate optimizer state.

Helium training Moshi training
Hyper-parameter pre-training pre-training post-training fisher fine

Temporal Transformer

Model dimension 4096

same
MLP dimension 11264
Number of heads 32
Number of layers 32
Context size 4096 3000 steps, e.g. 4 min.
Learning rate 3 · 10−4 3 · 10−5 3 · 10−6 2 · 10−6 2 · 10−6

Depth Transformer

Model dimension - 1024
MLP dimension - 4096
Number of heads - 16
Number of layers - 6
Learning rate - 2 · 10−4 5 · 10−5 4 · 10−6 2 · 10−6

Input / Output space

Text cardinality 32000 32000
Audio cardinality - 2048
Frame rate - 12.5 Hz

Common parameters

Batch size (text) 4.2M tok. 1.2M tok. 1.2M tok. - -
Batch size (audio) - 16h 8h 40min 2.7h
Training steps 500k 1M 100k 10k 30k
LR Schedule cosine cosine - - -
Acoustic delay - 2 1 1 1
Text delay - ±0.6 0 0 0

3.2.2 Pre-training data filtering

Training data is one of the critical ingredients to train LLMs: we now describe our method to
obtain a large and high-quality text dataset. We start from high-quality data sources, such
as Wikipedia, Stack Exchange and a large collection of scientific articles. As the quantity
of data from these sources is too small to train a LLM, we also rely on web crawled data,
specifically from CommonCrawl, to extend our dataset. See more details on data sources in
Section 4.1. Web data requires extensive processing to obtain a high-quality training set:
we perform deduplication, language identification and quality filtering. In the following, we
describe each operation in more details.
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Deduplication. We start from the WET files, which contain only the text content of web-
pages, which was extracted by the CommonCrawl project. Because this format contains
all the text of a page, it includes a lot of boilerplate such as navigation menus. Thus, the
first step of our pipeline is to deduplicate each shard (there is 100 shards per crawl) at the
line level, to remove this boilerplate. To do so, we compute the FNV-1a6 hash of each line,
and use a bloom filter to remove duplicates. We also train a fastText (Joulin et al., 2016)
classifier on duplicates vs. non-duplicates, to perform fuzzy deduplication: here we only
remove blocks of at least 3 consecutive lines that are classified as duplicates.

Language identification. Once deduplication is performed, we apply a language identi-
fier based on fastText to keep English data only. Language identification is performed at
the document level, and we only keep documents above a certain threshold (0.85).

Quality filtering. The last step is to filter the remaining data, to keep high-quality web-
pages only. To perform this step, we train a fastText classifier on lines from our high quality
data sources and from random CommonCrawl webpages. We obtain a classifier with 9 cat-
egories, corresponding to our different high quality sources such as Wikipedia or Wikibooks
and to subsets of StackExchange such as STEM or humanities. The motivation is to obtain
a finer control over which documents to keep, not only based on similarity to high quality
sources, but also based on their domains. This classifier is applied at the line level, and
an aggregated score is obtained by computing the average scores of each line, weighted by
their length. Again, we keep documents corresponding to scores above a certain threshold.

3.3 Audio Tokenization

To discretize waveforms into audio tokens, we introduce Mimi, a neural audio codec (Zeghi-
dour et al., 2022; Défossez et al., 2023) that operates as an autoencoder with a discrete
bottleneck (van den Oord et al., 2017). In the literature, and following the terminology de-
fined by Borsos et al. (2022), these tokens are referred to as acoustic tokens, as they model
fine audio details and are optimized for high-quality reconstruction. While these acous-
tic tokens provide appropriate targets for conditioned text-to-audio models (e.g. text-to-
speech (Wang et al., 2023) or text-to-music (Copet et al., 2023)), unconditioned speech gen-
eration requires combining them with semantic tokens extracted from self-supervised speech
models (Baevski et al., 2020; Hsu et al., 2021; Chung et al., 2021). Unlike their acoustic
counterpart, semantic tokens do not allow for reconstructing high-quality audio but correlate
strongly with linguistic content. This similarity with language allows generating intelligible
and consistent speech, even without text conditioning, by using semantic audio tokens as a
prefix to predicting acoustic tokens. Yet, this hybrid tokenization approach is not compati-
ble with real-time generation. Semantic tokens are typically not causal and can thus only be
computed in an offline manner. Moreover, generating acoustic and semantic tokens with sep-
arate encoders represents a non-negligible computational burden. Consequently, and taking
inspiration from previous work on SpeechTokenizer (Zhang et al., 2024b), Mimi uses distil-
lation to transfer non-causal, high-level semantic information into the tokens produced by
a causal model, allowing for streaming encoding and decoding of semantic-acoustic tokens.

6. http://www.isthe.com/chongo/tech/comp/fnv
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Figure 2: Architecture and training of Mimi, our neural audio codec, with its
split residual vector quantization. During training (blue part, top), we distill non-
causal embeddings from WavLM (Chen et al., 2022) into a single vector quantizer which
produces semantic tokens, and is combined with separate acoustic tokens for reconstruction.

3.3.1 Architecture

Our baseline architecture takes inspiration from SoundStream (Zeghidour et al., 2022) and
Encodec (Défossez et al., 2023) and consists of a SeaNet (Tagliasacchi et al., 2020) autoen-
coder and a Residual Vector Quantizer (Zeghidour et al., 2022). The encoder projects a
single-channel waveform x ∈ RL to a latent representation enc(x) ∈ RS×D by cascading
residual convolutional blocks that interleave dilated (van den Oord et al., 2016) and strided
convolutions along with ELU (Clevert et al., 2016) non-linearities and Weight Normaliza-
tion (Salimans and Kingma, 2016). All convolutions are causal, such that this autoencoder
can run in a streaming fashion. With 4 convolutional blocks and respective striding fac-
tors (4, 5, 6, 8), and a final 1D convolution with stride 2, Mimi’s encoder projects a 24kHz
waveform to a latent representation of 12.5 frames per second and dimension D = 512.
Symmetrically, the decoder adopts a similar structure but with transposed convolutions
rather than strided ones, to project the latent representation back to 24kHz audio. We
discretize the latent space with a Residual Vector Quantizer (Zeghidour et al., 2022), which
iteratively applies vector quantization (VQ) to the residuals of the previous quantizer. With
Q quantizers, each with a codebook of NA centroids, the RVQ discretizes the latent space
into {1, . . . , NA}S×Q. As a baseline, we train this model with a combination of reconstruc-
tion and adversarial losses, following the setup of Encodec (Défossez et al., 2023). We detail
below the main changes of Mimi with respect to this default configuration.

Transformer-based bottleneck. To improve the ability of Mimi to encode speech into
compact representations while reconstructing high-quality audio, we add Transformer mod-
ules in the bottleneck, one right before quantization and one after. These Transformers
have 8 layers, 8 heads, RoPE position encodings, a finite context of 250 frames (20 sec-
onds), GELU (Hendrycks and Gimpel, 2016a) activations, a model dimension of 512 and
an MLP dimension of 2048. To stabilize training, we use LayerScale (Touvron et al., 2021),
with initialization of the diagonal values at 0.01. Both Transformers use causal masking,
which preserves the compatibility of the whole architecture with streaming inference. Both
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Transformers prove to be useful with regard to perceived audio quality, while Transformer
in the encoder also improves the distillation of semantic information described below (see
Table 3 for ablation studies).

Causality and streaming. With the mentioned hyper-parameters, Mimi is causal and
can be used in a streaming fashion, both for encoding and decoding. Both its initial frame
size and overall stride correspond to 80ms, meaning that given a first audio frame of 80ms,
Mimi outputs a first latent timestep, which can be decoded to 80ms of output audio.

Optimization. Unlike purely convolutional codecs that use Adam (Kingma and Ba,
2015), the introduction of Transformers into the architecture requires additional regular-
ization with weight decay along with using the AdamW (Loshchilov and Hutter, 2019)
optimizer. More precisely, we apply weight decay only to the parameters of the Transform-
ers, with a weight of 5 · 10−2. We use a learning rate of 8 · 10−4, a momentum decay of 0.5
and a decay of the squared gradient of 0.9, and an exponential moving average of weights
with a decay of 0.99. We train with a batch size of 128 on random windows of 12 s, for
4M steps, while the context of Transformers is limited to 10s (250 frames before the last
downsampling layer of the encoder, and symmetrically for the decoder).

Quantization rate. We use Q = 8 quantizers, each with a codebook size of NA = 2048.
At 12.5Hz, this represents a bitrate of 1.1kbps. While the latent dimension is 512, we
project embeddings to 256 dimensions before applying the RVQ, and project back to 512
before the decoder. Consistently with previous work, we use quantizer dropout (Zeghidour
et al., 2022) to provide the codec with bitrate scalability. We moreover follow the obser-
vation of Kumar et al. (2023) that not applying quantization with a certain probability
during training improves audio quality. More precisely, we only apply quantization 50% of
the time, on a per-sequence basis, during training. Unlike Kumar et al. (2023), this means
passing unquantized embeddings to the decoder, rather than passing embeddings quantized
with all quantizers. Table 3 shows that this significantly improves objective quality metrics,
while human evaluations are not conclusive. Across our experiments, we make the somehow
counter-intuitive observation that this gain gets more significant as we lower the bitrate.

Adversarial-only training. As a baseline, we train Mimi with the same combination of
reconstruction and adversarial losses as Défossez et al. (2023), namely a multi-scale mel-
spectrogram reconstruction loss along with a multi-scale STFT discriminator. The exact
parameters can be found in the Audiocraft repository.7 While previous neural codecs rely on
such combinations of reconstruction and adversarial losses, we experiment with pure adver-
sarial training, where we only keep the feature loss and discriminator loss. We note that this
was previously experimented in the context of bandwidth extension by Hauret et al. (2023).
While removing reconstruction losses majorly degrades objective metrics, we observed dur-
ing development that the resulting audio sounded much better than expected based on afore-
mentioned metrics. Subjective evaluations reported in Table 4 confirm this observation and
demonstrate a remarkable boost in audio quality from training with adversarial losses only.

7. https://github.com/facebookresearch/audiocraft/blob/main/config/solver/compression/
default.yaml
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3.3.2 Learning semantic-acoustic tokens with a split RVQ

Similarly to SpeechTokenizer (Zhang et al., 2024b), we distill semantic information from a
self-supervised model (WavLM8 (Chen et al., 2022) in our case) into the first level of the
RVQ. WavLM projects a 16kHz waveform into 1024-dimensional embeddings sampled at
50Hz, while Mimi projects a 24kHz waveform into 512-dimensional at 12.5Hz. During train-
ing, we thus produce targets for distillation by downsampling the input waveform to 16kHz
before computing WavLM embeddings. We then apply a linear projection with an output
dimension of 1024, followed by average pooling with a stride of 4 and a kernel size of 8. In-
terestingly, we observed that it was critical for performance to perform this average pooling
in a non-causal way, which is compatible with streaming inference as these embeddings are
only used during training. We then compute a cosine distance between the output of the
first quantizer and the transformed WavLM embeddings, to perform distillation. Table 3
shows that this distillation loss conflicts with reconstruction and adversarial losses targeting
quality. Indeed, while distillation significantly improves the phonetic discriminability of the
first quantizer (as measured by ABX (Schatz et al., 2013)), it also affects audio quality
negatively. We hypothesize that this is due to distilling semantic information into the first
level of a single RVQ: As higher-order quantizers operate on the residual of the first one,
the latter needs to trade audio quality for phonetic discriminability. We address this issue
by proposing a split RVQ. Rather than a single RVQ with 8 levels, we distill semantic
information into a plain VQ and apply an RVQ with 7 levels in parallel. We sum their
outputs, such that while both can be used for reconstruction, we remove the constraint
that acoustic information should be conserved in the residual of the semantic quantizer.
Figure 2 illustrates this architecture and Table 3 shows that this solution provides a better
semantic-acoustic trade-off overall.

3.4 Generative Audio Modeling

We now describe how we extend the base Helium model to support the modeling of the
audio tokens provided by the Mimi codec. With our goal of achieving realistic spoken
dialogue interactions, we further show how to model not just a single stream of audio, but
two at the same time, one representing the user, and one the system. Finally, we detail a
novel feature, the Inner Monologue, which consists in a joint modeling of the textual and
audio modalities on the system side, to improve the quality of interactions.

3.4.1 Hierarchical autoregressive modeling with RQ-Transformer

Let U ∈ {1, . . . , N}S be a discrete random sequence, with cardinality N and a sequence
length S. For convenience, we also denote U0 = 0, a deterministic initial token value.
Autoregressive modeling consists in estimating the joint distribution P [U1, . . . , US ] through
estimating the conditional distributions P [Us|U0, . . . Us−1] for all steps 1 ≤ s ≤ S. Text
language models, such as GPT (Radford et al., 2019) or Helium, fit this paradigm.

When modeling spoken language, relying on the tokenized text yields a much more
compact representation than audio tokens: Using the Mimi codec introduced in Section 3.3,
with Q = 8 codebooks at a frame rate of 12.5hz, one would require a sequence length of

8. https://huggingface.co/microsoft/wavlm-large
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Figure 3: Architecture of the RQ-Transformer. The RQ-Transformer breaks down a
flattened sequence of length K ·S into S timesteps for a large Temporal Transformer which
produces a context embedding used to condition a smaller Depth Transformer over K steps.
This allows scaling to longer sequences by increasing S—or to a higher depth by increasing
K— than modeling the flattened sequence with a single model. In this figure, we use K = 4
for the sake of illustration.

100 steps per second of audio to generate. To model 5 minutes of audio, this would amount
to 30,000 timesteps, which represents a significant computational cost and generating 100
tokens per second is incompatible with streaming inference. As a comparison, a sample of
English speech can be represented with around 3 to 4 text tokens per second.

We are interested in modeling not just a single sequence (Us), but multiple sub-sequences,
e.g. different audio codebooks, along with an optional text stream. We can stack those
sub-sequences as Vs,k for 1 ≤ s ≤ S and 1 ≤ k ≤ K. Similarly, we define V0,k = 0, a
deterministic initial token value for all sub-sequences. For each 1 ≤ s ≤ S and 1 ≤ k ≤ K,
Vs,k ∈ {1, . . . , Nk}, where Nk is the cardinality of the k-th sub-sequence. One can flatten
the K sequences into a single one, increasing the number of predictions by K. Lee et al.
(2022) propose using a smaller autoregressive model along the dimension K, combined with
a larger model along the time dimension, forming a RQ-Transformer. Later, Yu et al. (2024)
suggested a similar approach for byte-level modeling.

RQ-Transformer. Formally, the RQ-Transformer consists in two Transformer models,
as illustrated in Figure 3. It consists of a Temporal Transformer, e.g. with the same archi-
tecture as the one described for Helium in Section 3.2, and a smaller Depth Transformer.
We denote TrTemp the function represented by the Temporal Transformer, and TrDepth

the one for the Depth Transformer. For simplicity, and for all steps s ≤ S, we denote
Vs = (Vs,1, . . . , Vs,K) the joint value of all sub-sequences at step s. For a given sequence
step 1 ≤ s ≤ S, the Temporal Transformer maps (V0, . . . , Vs−1) to a temporal context vector

zs = TrTemp(V0, . . . , Vs−1) ∈ Rd. (1)

If we further take a sub-sequence index 1 < k ≤ K, the Depth Transformer maps both zs
along with (Vs,1, . . . , Vs,k−1) to the logits estimate

ls,k = TrDepth(zs, Vs,1, . . . , Vs,k−1) ∈ RNk . (2)

We further define ls,1 = Lin(zs) ∈ RN1 , with Lin a dedicated linear layer. We train TrTemp,
TrDepth and Lin so that softmax(ls,k) is a good approximation of the distribution of Vs,k
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conditioned on all sub-sequences for the previous steps, and of the previous sub-sequences
for the current step, e.g.{

softmax(ls,1) ≈ P [Vs,1|V0, . . . , Vs−1]

softmax(ls,k) ≈ P [Vs,k|V0, . . . , Vs−1, Vs,1, . . . Vs,k−1] if k > 1.
(3)

Importantly, the number of steps in the Temporal Transformer is always equal to S, rather
than K · S, and the number of steps in the Depth Transformer is at most K. In practice,
the Temporal Transformer receives at each step s as input the sum of K learnt embedding
tables representing the value for the last Vs−1. Given 1 < k ≤ K, the Depth Transformer
receives as input the sum of zs and of a learnt embedding representing Vs,k−1.

As detailed in Table 1, the Depth Transformer used for Moshi has 6 layers, a dimension of
1024, and 16 attention heads. Unlike Lee et al. (2022), we use a different set of parameters for
each index k for the linear layers, projection and fully connected, in the Depth Transformer.
Indeed, different sub-sequences might require different transformations. Given the smaller
size of this transformer, this has no impact on both training and inference time, while Table 6
shows that this depthwise parametrization improves the quality of generated sequences.

3.4.2 Audio modeling

The audio codec Mimi described in Section 3.3 outputs Q sub-sequences, with 12.5 steps
per second of audio. We denote those sequences by At,q ∈ {1, . . . , NA} for 1 ≤ t ≤ T with
T = 12.5 · duration, and 1 ≤ q ≤ Q with Q = 8. We insert the audio sub-sequences into
the multi-sequence V modeled by the RQ-Transformer. Remember that the first codebook
At,1 corresponds to the semantic information, as detailed in Section 3.3.2, while the other
codebooks correspond to acoustic features.

Acoustic delay. We first experimented with simply setting V = A in the modeling.
However we find that introducing a slight delay between the semantic and acoustic tokens led
to more stable generations. Copet et al. (2023) show that this leads to reduced dependencies
between the sub-sequences for a given time step, conditioned on the past, thus allowing
to use a weaker model to approximate the joint distribution P [Vs,k|V0, . . . , Vs−1] (in their
case, as the product of the conditioned marginals). Lemercier et al. (2024) further show a
connection between the mutual information between the sub-sequences at a given step, and
the quality of the generation: naturally, the more complex the interdependence, the more
powerful a model will be needed to estimate them.

As shown in Section 5.3, introducing a delay of 1 or 2 steps between the semantic and
acoustic features greatly improves the quality of the generation. This allows the Temporal,
larger, Transformer to model the inter-dependence between semantic and acoustic features.
Formally, given a delay τ ∈ N, we have, for all steps s

Vs,1 = As,1

Vs,q = As−τ,q if s ≥ τ + 1, q > 1

Vs,q = 0 if s < τ + 1, q > 1.

(4)

Note that using RQ-Transformers to model audio was successfully used by Yang et al. (2023)
and Zhu et al. (2024). We introduce here the use of per-codebook parameters in the Depth
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Figure 4: Representation of the joint sequence modeled by Moshi. Each column
represents the tokens for a given step in the joint sequence (Vs,k) described in Equation 6
with an acoustic delay τ = 1, e.g. the input of the Temporal Transformer for this step.
Tokens are predicted from bottom to top in the Depth Transformer. At inference time,
tokens under the dashed line (corresponding to Moshi) are sampled, while those above are
fed from the user. This design allows for our model to handle overlapping speech turns.

Transformer, and the use of the acoustic delay. Compared with (Zhu et al., 2024) which
first generates all the semantic tokens, we generate them jointly with the acoustic tokens,
which allows for the first time a streaming modeling of semantic and acoustic tokens jointly.

3.4.3 Multi-stream modeling

Modeling a single stream of audio is not sufficient to fully model a conversation. Our frame-
work can be extended to modeling a two-speaker conversation: given two streams of audios
(At,q) and (A′

t,q), we simply apply the acoustic delay to both, and concatenate them into V ,
extending Equation 4. In practice, A will correspond to Moshi, while A′ models the user.

3.4.4 Inner Monologue

While operating purely in the audio domain already yields convincing results (see Table 7),
we observe that having Moshi also model the textual representation of its own speech is
providing a scaffolding that increases the linguistic quality of its generation. Formally, we
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define a text stream W ∈ {1, . . . , NW }T derived from the sequence of text tokens obtained
by applying the SentencePiece tokenizer (Kudo and Richardson, 2018) to the transcription
of the audio corresponding to Moshi with Whisper (Radford et al., 2023), as described
after. We insert W as the first sub-sequence in V , such that it acts as a prefix to the
generation of semantic tokens. This can be seen as an extension of the hierarchical semantic-
to-acoustic generation introduced by Borsos et al. (2022). Note that we do not use the
textual representation corresponding to the stream of the user, as transcribing this flux
in real time would be challenging, and relying on an external ASR system contradicts our
end-to-end speech-to-speech approach. Ablation studies in Section 5.3 show that among
the design choices made for Moshi, Inner Monologue has one of the most critical impacts
on the quality of generated speech.

Aligning text and audio tokens. To integrate text tokens with audio tokens that
operate at a constant framerate of 12.5Hz, we need to align them to this framerate. For that,
we leverage the word-level timestamp provided by Whisper. The i-th word in the transcript
is mapped to ni ∈ N∗ text tokens wi,j , j ≤ ni, along with a start index ti ∈ {1, . . . T}, simply
defined as its start timestamp divided by the framerate of 12.5 Hz. We define two special
tokens: PAD and EPAD, that never appear in any of the word tokens. We build W such that
when a word starts, (Wt) contains its text tokens, followed by PAD until the next word.
EPAD is inserted before the next word to indicate the end of the padding. While not strictly
necessary, we observed this provided a useful guidance to the model by splitting the decision
of ending a word, and which one should follow, into two steps.

First, the sequence (Wt) is initialized with PAD tokens, e.g. ∀t,Wt ← PAD. Then, we
modify it iteratively as follows. For each word i and its start index ti, we update W as{

Wti−1 ← EPAD

Wti+j ← wi,j ∀j ≤ ni.
(5)

Note that if ti = 1, we instead insert EPAD at index 1, and shift the text tokens. We do
not insert an EPAD token if it would overwrite a text token from a previous word. As text
tokens are more compact than the corresponding audio tokens, there is usually no overlap
between words in Wt. In English conversational speech, we observe that padding tokens
represent about 65% of the tokens.

Deriving streaming ASR and TTS. One can further introduce some delay between
the text sequence (Wt), and the audio tokens (At,q). This controls in which modality the
language model will take the decision about the content of the generated audio. By setting
the audio ahead of the text, the content of the text will be dictated by what audio has been
sampled in the previous steps. In particular, by sampling only the text tokens, while using
the ground truth audio tokens and discarding the prediction of the model for them, one
obtain a streaming Automatic Speech Recognition model, which also provides precise word
level alignment. On the other hand, by changing the text delay so that the text is ahead of
the audio tokens, the content of the audio is dictated by the text content. Once more, given
a sequence of properly padded text tokens, one obtain a streaming Text-To-Speech model.
We further describe in Appendix C how one can adapt the inference of a language model
with delayed text to obtain a zero-shot properly padded text tokens sequence. Experiments
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in Section 5.7 show how a single delay hyper-parameter allows for switching from an ASR
to a TTS model with no changes in the loss, architecture, or training data.

Joint sequence modeling for Moshi. Putting together the multi-stream and inner
monologue, we have the final set V of sequences to model defined as

Vs,1 = Ws aligned text tokens.
Vs,2 = As,1 semantic tokens of Moshi.
Vs,1+q = As−τ,q if s ≥ τ + 1, 1 < q ≤ Q delayed acoustic tok. of Moshi.
Vs,1+Q+1 = A′

s,1 semantic tokens of other.

Vs,1+Q+q = A′
s−τ,q if s ≥ τ + 1, 1 < q ≤ Q delayed acoustic tok. of other,

(6)

amounting to a total number of K = 2Q + 1 streams, with Q = 8 in the experiments. A
summary is provided in Figure 4.

Inference of Moshi. The joint sequence given by Equation 6 is the target for our model-
ing task at train time: At any time step s, the model is input with 0, V1, . . . , Vs−1 and output
an estimated probability distribution V̂s(0, V1, . . . , Vs−1). At inference time, we sample from
V̂s,k for all the sub-sequence indexes that corresponds to outputs of Moshi: i.e., for k = 1 for
the text tokens corresponding to Moshi’s speech, and for k ∈ {2, . . . , 2+Q} for Moshi’s audio
tokens. In an application setting, prediction for the audio coming from the user (k > 2+Q) is
actually ignored, as the actual user audio is used instead. However, modeling the user stream
as output allows generating simulated dialogues, which is necessary for offline evaluation as
in Section 5.6. Interestingly, there is no explicit boundaries for the change of turns between
the user and Moshi: Moshi can speak and listen at all time, and do both at once if needed.
In particular, when the user speaks and Moshi stays silent, the corresponding audio tokens
for Moshi’s stream decode into “natural silence”, a near silent waveform, instead of having
a fixed, well defined value; At the same time, Moshi’s text stream will be filled with PAD

tokens. As a result, the text stream can provide interesting ways of controlling Moshi, for
instance, forcing the sampling of a EPAD token will make Moshi start talking immediately.

4 Datasets and Training

4.1 Text Data

Our training dataset is made of a mix of high-quality data sources and filtered web data
from CommonCrawl. More specifically, 12.5% of our dataset is from the following curated
sources: Wikipedia,9 Wikibooks, Wikisource, Wikinews, StackExchange10 and the collec-
tion of scientific articles pes2o.11 Instead of doing multiple passes on Wikipedia, we use five
different dumps from 2017, 2018, 2019, 2021 and 2022. The remaining 87.5% of our dataset
is from CommonCrawl, and was filtered with the pipeline described in Section 3.2.2. We
used the following ten crawls: 2018-30, 2019-04, 2019-30, 2020-05, 2020-34, 2021-04,
2021-31, 2022-05, 2022-33, 2023-40.

9. https://dumps.wikimedia.org/
10. https://archive.org/details/stackexchange
11. https://github.com/allenai/peS2o
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4.2 Audio Data

We use an audio collection of 7 million hours, which we call the unsupervised audio dataset,
of readily available audio content, the majority of which contains English speech. We
transcribe this set with Whisper (Radford et al., 2023), using the large-v3 model. We use
this data for the audio pre-training phase, during which we do not use the multi-stream
approach described in Section 3.4.3, but instead use a single stream of audio representing all
speakers at once. Similarly, the text stream described in Section 3.4.4 represents the words
coming from all speakers. All the audio is resampled to 24kHz and downmixed to mono.

To achieve multi-stream, we need the model to gain the ability to both listen and speak at
the same time. For this, we further leverage the Fisher dataset (Cieri et al., 2004). It consists
of 2000 hours of phone conversations between randomly paired participants, with a given
topic to discuss. A property of Fisher is that each conversation side is recorded on a separate
channels, which allows providing ground-truth separated streams to Moshi. The original
audio is sampled at 8kHz, and we use AudioSR (Liu et al., 2023a) to upsample it to 24kHz.

Finally, we source 170 hours of natural and scripted conversations between multiple
pairs of participants, recorded with separate channels per speaker, in order to provide a
small dataset on which to finetune the model to improve the quality over the one obtained
when using only Fisher. We call this dataset the supervised multi-stream dataset. We do not
train Moshi directly on this dataset, but use it to train a realistic multi-stream TTS model,
and fine-tune Helium on real conversation transcripts as explained in Sections 4.3 and 4.4.

For both Fisher and this last dataset, we sample one speaker randomly as the main
speaker (i.e., Moshi speaking), and put the other speaker on the second audio stream. For
Fisher, the text stream only contains the transcription of the main speaker. To obtain reli-
able timestamps, despite long silences in each stream, we use transcription obtained with the
whisper-timestamped package (Louradour, 2023), along with the medium Whisper model.

4.3 Speech-Text Instruct Data

Early experiments using text-based instruct datasets such as Open Hermes (Teknium, 2023)
proved to be ill-suited for the instruct tuning of a spoken conversational system. In partic-
ular, the data formatting was often impossible to properly render with TTS (e.g. URLs),
and the format of the questions and responses was not following a natural oral flow (e.g.
bullet points, long enumerations). Instead, we leverage Helium, fine-tuned on Open Hermes
and transcripts of real conversations, to generate realistic interactions between a speech-
based AI model and a user. We then synthesize them with our multi-stream streaming
TTS described in Appendix C, leading to more than 20k hours of synthetic speech data.
To give Moshi its own consistent voice, we also condition the TTS engine on the voice of a
single actor, who recorded monologues covering more than 70 speaking styles, as listed in
Table 19. Experiments on voice consistency reported in Section 6.3 show that simply using
a consistent voice for Moshi during instruction tuning is enough to guarantee almost surely
that it does not use another voice, without further control during inference. In contrast, the
voice of the second audio stream (the user) is randomly sampled for each example, giving
more robustness to different speaking conditions and accents.

To generate the transcripts, we use different prompts, aiming at capturing different
kinds of interactions between a user and Moshi. First, we generate conversations about
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general knowledge, by starting from a few Wikipedia paragraphs or StackExchange posts,
which we refer to as context. This ensures that Moshi’s conversations cover a wide range
of topics, such as history, cooking advice or pop culture.

More precisely, using a given context, we obtain a summary of a potential discussion
with the following prompt:

{{context}}

Based on information from the previous paragraph, write the summary

of a conversation about {{title}} between Blake and Moshi. The

summary must be 2 sentences long, and start with "They" or "The

speakers".

where {{context}} refers to paragraphs from Wikipedia or StackExchange and {{title}}
is the corresponding title. Then, we generate the full transcript with the prompt:

{{context}}

Write the transcript of a conversation between Blake and Moshi.

{{summary}} Moshi is knowledgeable about the topic. Use some

backchanneling. Use short turns.

Similarly, to give Moshi information about itself and the Kyutai lab, we generate para-
graphs describing both and use them as additional context.

Second, we produce interactions containing instructions about Moshi’s voice, such as
the other speaker requesting Moshi to speak with an angry voice or like a pirate. Our
first strategy is to generate single turn interactions where the model is instructed to tell
a sentence, a monologue or a poem about an entity, belonging to a high level category
such as “sports” or “animals”, using a particular voice. The voice requested by the other
speaker and the entity are randomly sampled, and are thus completely unrelated. Our
second strategy is to generate roleplaying situations, corresponding to different emotions or
speaking styles with the following prompt:

Write a list of 10 situations about a {{voice}} {{character}}. Each

situation must start with "a {{voice}} {{character}} who" and must be

at most 8 words long.

Examples of voice adjective include “happy” or “suprised” and examples of characters
include “detective” or “superhero”. We then generate the interaction using the prompt:

Write a dialogue between Blake and Moshi, {{situation}}. Use a lot of

backchanneling.
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To make Moshi robust to mispronounced words, we also generate instructions containing
misspellings in the user’s questions, followed by Moshi asking the user to repeat herself or to
clarify the question. We also generate questions containing a false or misleading fact (such
as “Is the Eiffel Tower in Beijing?”), to train the model to answer “No” and correct the user.
Otherwise, the vast majority of generated conversations only contain questions from the user
where Moshi should answer positively. We generate basic math, grammar or trivia single-
turn questions and answers, as we noticed that Moshi was initially not performing well on
simple factual tasks like adding numbers. Finally, we generate safety conversations, where
the user asks unethical or NSFW questions, and Moshi refuses to answer these requests.

4.4 Training Stages and Hyper-parameters

Helium pre-training. An overview of the training stages and hyper-parameters is pro-
vided in Table 1. For each stage, we use AdamW (Loshchilov and Hutter, 2019), with a
weight decay of 0.1, a momentum decay of 0.9, and a decay for the average of the squared
gradient of 0.95. All models are trained on H100 GPUs, using FSDP and activation check-
pointing. The text-only language model, Helium, is trained for 500k steps, with a batch size
of 4.2M tokens, using a cosine learning rate schedule starting at 3 ·10−4 with linear warmup.

Moshi pre-training. Then, we initialize the Temporal Transformer in Moshi with He-
lium, while the Depth Transformer described in Section 3.4.1 is randomly initialized. We
first train on the unsupervised audio dataset presented in Section 4.2, using a single stream
of audio, with a batch size covering 16 hours of audio, each batch item consisting of a 5 mn
sequence. We mask the corresponding text tokens with a probability of 30%. We randomize
the delay between the text and audio tokens between -0.6 and +0.6 seconds. In order to
prevent catastrophic forgetting, we also train half of the time on batches of text only data
from the same dataset as used for Helium. In total, we make 1 million training steps, with
a cosine learning rate starting at 3 ·10−5 for the Temporal Transformer, and 2 ·10−4 for the
Depth Transformer, also with a linear warmup. In order to ensure the updates from the text-
only batches are balanced with those from the audio dataset, we use two separate optimizer
states. In addition, when operating on the text stream from an audio batch, we multiply the
learning rate for the text embedding and text linear layer by 0.75. Finally, as padding tokens
are predominant for audio batches, we reduce their weight by 50% in the cross-entropy loss.

Moshi post-training. Starting from the model obtained from the previous stage, we
then train it to gain its multi-stream ability. First, we use PyAnnote (Bredin, 2023) to
diarize the audio from the unsupervised audio dataset. We sample one speaker at random,
which will act as the main speaker, and derive a binary mask over the waveform, with a
value of 1 when the speaker is active based on the diarization, and 0 otherwise. This mask
provides us with two waveforms: one with the speaker, and one with the residual (poten-
tially several speakers), which are encoded separately and then used as the two input audio
streams described in Section 3.4.3. The text stream only contains the text tokens from the
selected main speaker, and the delay between text and audio tokens is fixed to 0. We train
for 100k steps, with a batch size of 8 hours of audio, and a fixed learning rate of 3 · 10−6 for
the Temporal Transformer, and 5 ·10−5 for the Depth Transformer. Like for the pretraining
phase, we sample full text-only batches 10% of the time.
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Moshi finetuning. The previously described simulated multi-stream provides a good pre-
training task but is far from being sufficient to capture natural conversations: For instance,
it contains no overlap, and the stream of an inactive speaker is perfectly silent. We then use
the Fisher dataset (Cieri et al., 2004) to have the model learn real multi-stream interaction.
We sample one of the two speakers to be the first (and main) speaker. We train for 10k
batches, with a batch size of 40min of audio with a learning rate of 2 · 10−6/4 · 10−6 for the
main/Depth Transformer. We no longer sample full text batches.

Finally, we set the speaker identity for the first speaker stream to be that of Moshi, a
useful conversational assistant, with a final stage of instruct finetuning. We use the synthetic
instruct dataset described in Section 4.3, with a batch size of 2.7 hours of audio, for 30k
steps, with a learning rate of 2 · 10−6 for both transformers.

During this stage, we perform data augmentation on the user’s stream to make Moshi
robust to various situations. Namely, we apply a random gain to the user stream between
-24 dB and +15 dB, 50% of the time. 30% of the time, we further add noise extracts
from the Deep Noise Suppression challenge (Dubey et al., 2023) which we concatenate in
order to cover the entire duration of each example. The noise is amplified to reach a target
volume relative to the original source between -30 dB and +6 dB. Each time we need to
sample a new noise, we alternatively use a silent section with a random duration up to
30 seconds of silence with probability of 50%, so that the model can handle the audio
condition going from noisy to silent, and vice versa. We emulate echo from Moshi into the
user’s microphone by adding a scaled down copy of Moshi’s stream into the user’s stream,
scaled by as factor uniformly sampled in [0, 0.2], and a delay uniformly sampled between
[100ms, 500ms]. Finally, we apply to the user’s stream, potentially augmented with the
echo, a reverb-like augmentation as introduced by Defossez et al. (2020). The echo and
reverb are applied together with a probability of 30%.

TTS Training. We also train a streaming, multi-stream text-to-speech model, using the
method described in Section 3.4.4. The audio pre-training stage is shared with Moshi, while
the post-training is completed using a delay of 2 seconds for the audio stream compared to
the text. The model is finetuned on the supervised multi-stream dataset containing high
quality recording of interactions between two speakers. It is used to generate the synthetic
finetuning instruct dataset described in Section 4.3. Note that Moshi itself is not trained
on the supervised multi-stream dataset. Further details are provided in Appendix C.

Training loss. Moshi is trained to model joint sequences, as presented in eq. 6. Given
the ground-truth discrete token (Vs,k)s≤S,k≤K , and the estimated logits (ls,k)s≤S,k≤K from
eq.2, we use the following loss, with CE the cross entropy,

L(V, l) =
1

S

S∑
s=1

(
CE(ls,1, Vs,1) +

1∑K
k=2 αk

K∑
k=2

αkCE(ls,k, Vs,k)

)
. (7)

Thus, we give the same importance to the text token (k=1), and the combined audio tokens.
αk is set to 100 for semantic tokens, and 1 for acoustic ones.
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Table 2: Text language model evaluation. Performance on standard benchmarks for
evaluating large language models, including closed book question answering, reasoning and
multiple choice QA exams. We report in bold the best performing model trained on less
than 2.5T tokens.

ARCe ARCc OBQA HS WG PIQA SIQA TQA NQ MMLU

Helium 79.6 55.9 53.6 76.3 70.0 79.4 51.0 59.9/72.6 23.3 54.3

MPT 70.5 46.5 51.4 77.6 69.9 80.6 48.5 -/61.2 20.8 30.8
Falcon 73.7 47.5 53.0 76.3 68.9 80.3 47.2 -/64.6 21.0 28.0
Llama 2 75.2 45.9 58.6 77.2 69.2 78.8 48.3 -/72.1 25.7 45.3
OLMo 67.2 42.5 50.0 75.5 69.8 77.5 - -/- - 52.0

Mistral 80.5 54.9 52.2 81.0 74.2 82.2 47.0∗ 62.5/- 23.2 62.5
Gemma 1 81.5 53.2 52.8 81.2 72.3 81.2 51.8 63.4/- 23.0 64.3

5 Evaluation

5.1 Text Language Modeling

Metrics. We evaluate Helium (trained only on text data) on the following standard bench-
marks: AI2 Reasoning Challenge (Clark et al., 2018, ARC), Open-Book QA (Mihaylov
et al., 2018, OBQA), HellaSwag (Zellers et al., 2019, HS), WinoGrande (Sakaguchi et al.,
2021, WG), Physical Interaction QA (Bisk et al., 2020, PIQA), Social Interaction QA (Sap
et al., 2019), TriviaQA (Joshi et al., 2017, TQA), Natural Questions (Kwiatkowski et al.,
2019, NQ) and Massive Multitask Language Understanding benchmark (Hendrycks et al.,
2020, MMLU). These benchmarks cover a wide variety of tasks, including common sense
reasoning, closed-book question answering or multiple choice question answering from high
school and college subjects. We follow the evaluation protocol from previous work such as
GPT-3 or Llama: we perform 5-shot evaluation on TriviaQA, NQ and MMLU, and 0-shot
evaluation on the other datasets. On TriviaQA, we report performance on the Unfiltered
and Wikipedia splits.

Baselines. As baselines, we consider existing large language models with a size around
7B parameters, and which are trained using roughly the same amount of compute as He-
lium. More specifically, we include models that are trained on fewer than 2.5T tokens
(compared to the 2.1T tokens that are used to train Helium), namely MPT (Team, 2023),
Falcon (Almazrouei et al., 2023), Llama 2 (Touvron et al., 2023b) and OLMo (Groeneveld
et al., 2024). We also include Mistral and Gemma, two popular open weights models that
are trained using significantly more compute than Helium.

Results. We report results in Table 2, and we observe that on most benchmarks, He-
lium is on-par or outperforming models using similar amount of training compute. Even
compared to Mistral and Gemma, which use up to 3x more compute for training, Helium
obtains competitive results on some benchmarks such as ARC, Open-Book QA or Natural
Questions. This validates the quality of our pre-training text data.
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5.2 Audio Tokenization

Metrics. We then evaluate the semantic and acoustic performance of our neural codec,
Mimi. First, we evaluate whether the semantic tokens it produces provide targets that are
amenable to language modeling. To do so, we compute a triphone-based ABX (Schatz et al.,
2013) error rate that characterizes the phonetic discriminability of a representation space
by comparing distances between two embeddings of different instances of a same triphone
(e.g.“beg”) and a negative triphone that differs minimally (e.g.“bag”). More precisely, we
compute a “within speaker” ABX where the three instances are pronounced by the same
speaker, and report error rates on Librispeech (Panayotov et al., 2015) dev-clean with the
default parameters of the Librilight (Kahn et al., 2020) repository12. The resulting score has
been shown to be a strong predictor of the ability of a downstream audio language model to
produce coherent speech (Lakhotia et al., 2021). Since we are interested in characterizing
only the semantic token, we compute distances in the latent space produced after quanti-
zation with the semantic VQ only (i.e. before summing with acoustic tokens). Second, we
evaluate the acoustic quality of reconstructed audio. As objective, automatic metrics we
rely on VisQOL (Hines et al., 2015)— a full-reference model of acoustic similarity— and
MOSNet (Lo et al., 2019)— a reference-free model of audio quality. Given the limitations of
automatic evaluation of audio quality, we also perform human evaluations with a MUSHRA
protocol. We rely on judgments of 20 listeners, each one rating 30 samples of 10s each. Ta-
ble 3 reports ablations studies using objective metrics, while Table 4 provides a comparison
with previous work both in terms of objective and subjective evaluation.

Baselines. We compare against RVQGAN (Kumar et al., 2024), SemantiCodec (Liu et al.,
2024), and SpeechTokenizer (Zhang et al., 2024b). RVQGAN is a pure acoustic tokenizer,
in the sense that it does not encode semantic information. Thus, we only evaluate it in
terms of audio quality. RVQGAN produces tokens at 75Hz, so we only keep the first two
levels of RVQ to obtain a bitrate of 1.5kbps, closer to that of Mimi. On the other hand,
SpeechTokenizer relies on distillation to encode semantic information into its first token
such that we can evaluate both its semantic and acoustic properties. We keep its first 3
RVQ levels to obtain a 1.5kbps bitrate. Similarly, SemantiCodec also encodes semantic and
acoustic information such that it can be evaluated along both axes.

Results - Semantic tokens. Table 3 shows that Mimi’s phonetic discriminability of se-
mantic tokens, as measured by ABX, is poor in the absence of distillation and comparable
to acoustic tokens of previous work (Borsos et al., 2022): This means these semantic tokens
are not amenable to capturing linguistic content from speech. In contrast, distilling WavLM
into the semantic tokens significantly improves their phonetic discriminability, in particular
when using a Transformer in Mimi’s encoder. This can be explained by the fact that distill-
ing a large Transformer based encoder into a purely convolutional one is challenging, while
increasing the capacity and receptive field of the encoder helps. Yet, we observe a con-
flict between acoustic losses and semantic distillation, as improving ABX implies reducing
reconstruction quality (as measured by MUSHRA). Using a split RVQ as described in Sec-
tion 3.3.2 improves the trade-off between semantic properties and audio quality, improving
MUSHRA from 57.8 to 64.0 while moderately degrading ABX from 6.5% to 8.1%.

12. https://github.com/facebookresearch/libri-light/blob/main/eval/README.md
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Table 3: Ablation study on hyper-parameters of the Mimi codec. We evaluate
semantic modeling by reporting the error rate on a phonetic ABX discriminability task.
To evaluate reconstruction quality, we compute VisQOL and MOSNet and collect human
judgments with a MUSHRA protocol. “Quantization rate” refers to applying quantization
to the latent space only 50% of the time during training (independently from quantizer
dropout), as described in Section 3.3.

Quantization Transformer Transformer WavLM Split
ABX (↓) VisQOL (↑) MOSNet (↑) MUSHRA (↑)

Rate in encoder in decoder distillation quantizer

✓ ✓ ✓ 23.3% 2.91 2.89 65.9±1.7

✓ ✓ ✓ ✓ 6.5% 2.22 2.87 57.8±1.8

✓ ✓ ✓ ✓ 10.8% 2.79 2.85 59.7±1.7

✓ ✓ ✓ ✓ 8.1% 2.59 2.72 48.4±1.7

✓ ✓ ✓ ✓ 8.0% 2.45 2.88 68.3±1.7

✓ ✓ ✓ ✓ ✓ 8.1% 2.82 2.89 64.0±1.7

Table 4: Audio quality evaluation. Objective and subjective (MUSHRA) evaluation of
audio quality for baseline neural audio codecs—RVQGAN (Kumar et al., 2024), Seman-
tiCodec (Liu et al., 2024), and SpeechTokenizer (Zhang et al., 2024b)— and the most
important variants of Mimi. For a fair comparison with SemantiCodec and SpeechTok-
enizer, we also include a downsampled version of our codec in the MUSHRA study. fs is
the audio sample rate and fr the codec frame rate. Both Mimi codecs are trained with
distillation, and either with the same combination of reconstruction and adversarial losses
as Encodec (see Section 3.3) or adversarial losses only.

Model fs fr bitrate causal ABX (↓) VisQOL (↑) MOSNet (↑) MUSHRA (↑)

Ground Truth 24kHz - - - - - 3.08 90.6±1.0

RVQGAN 24kHz 75Hz 1.5kbps - 1.74 2.74 31.3±1.3

SemantiCodec 16kHz 50Hz 1.3kbps 42.2% 2.43 3.12 64.8±1.5

SpeechTokenizer 16kHz 50Hz 1.5kbps 3.3% 1.53 2.67 45.1±1.5

SpeechTokenizer 16kHz 50Hz 4.0kbps 3.3% 3.07 3.10 74.3±1.5

Mimi, adv. loss only 24kHz 12.5Hz 1.1kbps ✓ 8.7% 1.84 3.10 81.0±1.3

Same, downsampled at 16kHz 16kHz 12.5Hz 1.1kbps ✓ - - - 77.7±1.4

Mimi, non adv. only 24kHz 12.5Hz 1.1kbps ✓ 8.1% 2.82 2.89 58.8±1.8

Results - Acoustic tokens. Table 3 also shows a significant improvement in MUSHRA
when adding a Transformer in the decoder. Similarly, using a quantization rate of 50% sig-
nificantly improves VisQOL. Quantization rate however does not improve perceived quality.
More generally, we observe a poor correlation between VisQOL and MOSNet. In particular,
Table 4 shows that training Mimi with adversarial losses only leads to a very low VisQOL of
1.84 which does not account for the high perceived audio quality. We thus rely on MUSHRA
where raters are asked to judge the similarity of a reconstructed audio to its ground-truth
anchor, with a score between 0 and 100. This human evaluation shows a significant improve-
ment from using adversarial losses only, with a MUSHRA score of 81.0 against 58.8 when
using the mix of loss functions used in Encodec. Mimi moreover significantly outperforms
RVQGAN (Kumar et al., 2023) despite operating at a lower bitrate and modeling seman-
tic information. Mimi also provides higher reconstruction quality than SemantiCodec (Liu
et al., 2024) while operating at a 4× lower framerate. This property is crucial to achieve
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Table 5: Ablation study on the use of the RQ-Transformer. All models are initialized
with Helium and pretrained on audio. When not using RQ-Transformer, we predict the 8
levels of tokens with independent classification heads, following Copet et al. (2023). Note
that perplexities are only comparable between models with a given delay, as the classification
task is easier with more delay for higher tokens.

Acoustic Delay RQ-Transformer Perplexity

[0, 1, 2, 3, 4, 5, 6, 7] 42.2
[0, 1, 2, 3, 4, 5, 6, 7] ✓ 40.3
[0, 2, 2, 2, 2, 2, 2, 2] 135.4
[0, 2, 2, 2, 2, 2, 2, 2] ✓ 36.8

Table 6: Ablation study on delay patterns, weight of the semantic token and
Inner Monologue. All models are initialized with Helium, pretrained on audio and use
the RQ-Transformer. We vary the weight of the semantic token while keeping the weight
of other tokens (including the text token when using Inner Monologue) to 1. As different
delay patterns cannot be compared in terms of perplexity, we generate continuations from
3s prompts on the valid set, convert them into transcripts with Whisper (Radford et al.,
2023) and report their negative log-likelihood with LiteLlama-460M-1T13 along with their
length (in characters) as proxies for linguistic quality.

Acoustic Semantic Token Depthwise Inner Transcript Transcript
Delay Weight Parametrization Monologue NLL (↓) Length (↑)

[0, 0, 0, 0, 0, 0, 0, 0] 1.0 ✓ 4.36 486
[0, 1, 1, 1, 1, 1, 1, 1] 1.0 ✓ 4.12 529
[0, 2, 2, 2, 2, 2, 2, 2] 1.0 ✓ 4.09 519
[0, 2, 2, 2, 2, 2, 2, 2] 100.0 3.75 538
[0, 2, 2, 2, 2, 2, 2, 2] 100.0 ✓ 3.65 602
[0, 2, 2, 2, 2, 2, 2, 2] 100.0 ✓ ✓ 2.77 1920

the low latency of Moshi, since generating one temporal frame of audio tokens with Moshi
requires a full forward pass through the Temporal Transformer. Finally, both RVQGAN
and SemantiCodec are non-causal, while Mimi is fully causal and thus compatible with
streaming inference and modeling of real-time conversations.

Discussion. Mimi overall provides high reconstruction quality while encoding semantic
information, being fully causal, and operating at low framerate and bitrate. In consequence,
Mimi proves to be a well-fitted audio tokenizer to train real-time audio language models.
A collateral finding of our study is a concerning lack of correlation between objective and
subjective audio quality metrics. In particular, while we find VisQOL to provide a reliable
proxy for perceived quality when modifying the generator architecture, changing the train-
ing objective (e.g. removing reconstruction losses) moves the score in directions that are
completely decorrelated from human perception. This observation underscores the open
challenge of designing reliable objective proxies for perceived quality.
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5.3 Ablations on Generative Modeling

Metrics. We perform ablation studies to evaluate the impact of using an RQ-Transformer,
as well as comparing delay patterns and weighting of various token levels. All models are
initialized with Helium for the Temporal Transformer and pretrained on audio data. When
comparing models with a same delay pattern and without Inner Monologue, we rely on
perplexity, averaged over semantic and acoustic tokens. However, perplexities are not com-
parable between models with various delays, as they do not model the same conditional
distributions. To compare various delay patterns, we measure the ability of Moshi to gener-
ate intelligible, consistent speech by transcribing generations (conditioned on a 3s prompt)
with Whisper (Radford et al., 2023) and scoring the resulting transcripts with an external
text language model. We rely on a lightweight text model—LiteLlama-460M-1T14— as it
is more practical for continuous evaluation along training. We also report the length of the
transcripts (in characters), as we find it to a be a strong predictor of model quality (weak
models typically collapse to silence).

Results - RQ-Transformer. Table 5 reports results for ablations on the use of an RQ-
Transformer. We first replicate the setting of Copet et al. (2023) with the delay pattern
of [0, 1, 2, 3, 4, 5, 6, 7], which means that each level of RVQ token is generated one timestep
after the preceding level. In this context, we see that using an RQ-Transformer is not
necessary, as it only provides a marginal improvement in perplexity. However, this delay
pattern induces a theoretical latency of 8 timesteps, which amounts to 640ms, a latency
that is incompatible with the requirements of a real-time dialogue model. We thus switch to
a reduced latency of 240ms with the pattern [0, 2, 2, 2, 2, 2, 2, 2]. In that context, modeling
RVQ tokens with an RQ-Transformer significantly improves perplexity over using separate
classification heads. Thus, the RQ-Transformer becomes a critical component of generative
models of RVQ tokens under strict latency constraints.

Results - Additional ablations. Table 6 reports additional ablations on additional
delay patterns, the weight of the semantic token loss and our proposed Inner Monologue
procedure, all using the RQ-Transformer. First, we compare three configurations of delays
that are compatible with real-time dialogue. The [0, 0, 0, 0, 0, 0, 0, 0] pattern represents the
minimal latency of 80ms that can be obtained with Mimi tokens at 12.5Hz. Allowing
an additional 80ms of latency with one step of delay significantly improves the quality of
generated speech, while 240ms of latency brings further moderate improvement. In early
experiments, we also observed that the individual losses per RVQ level were conflicting with
one another, despite each level being more important in the final intelligibility and audio
quality than the next one. We thus bring two changes to the architecture and training
process. We first increase the weight of the loss on predicting the semantic tokens to 100,
while keeping it at 1 for all other levels of the audio tokens. This gives another boost
to speech intelligibility. We furthermore reduce competition between RVQ levels by using
a depthwise parametrization, as described in Section 3.4.1, such that each RVQ level is
predicted by its own set of weights in the Depth Transformer, rather than having shared
weights across levels. Finally, the most drastic improvement to the quality and length of
generated speech comes from enabling Inner Monologue.

14. https://huggingface.co/ahxt/LiteLlama-460M-1T
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Table 7: Performance of audio and text language modeling. We report accuracies
based on scoring with negative log-likelihood, normalized by sequence length. MMLU is
evaluated in a 5-shot setting. Reusing the terminology of Nguyen et al. (2024), ∅ represents
unsupported modalities while - represents unreported numbers.

Audio metrics Text metrics

Model sWUGGY sBLIMP sTopic-StoryCloze sStoryCloze MMLU

Audio only - Cold Start

GSLM (Lakhotia et al., 2021) 64.8 54.2 66.6 53.3 ∅
AudioLM (Borsos et al., 2022) 71.5 64.7 - - ∅
TWIST (Hassid et al., 2023) 72.2 56.5 - - ∅

Moshi 74.8 59.9 80.9 56.9 ∅

Audio only - Warm Start

TWIST (Hassid et al., 2023) 74.5 59.2 76.4 55.4 ∅
VoxtLM (Maiti et al., 2023) 62.9 53.9 - - ∅
Spirit-LM (Nguyen et al., 2024) 69.5 58.0 72.9 54.8 ∅

Moshi 74.3 58.9 81.8 58.7 ∅

Text and audio - Warm Start

VoxtLM (Maiti et al., 2023) 66.1 57.1 - - ∅
Spirit-LM (Nguyen et al., 2024) 69.0 58.3 82.9 61.0 36.9

Moshi after single-stream pretraining 72.6 58.8 83.0 60.8 49.8
Moshi after multi-stream instruct 63.0 55.2 83.6 62.7 49.7
Moshi after multi-stream instruct, synthetic voice 60.9 54.6 82.5 60.9 48.7

Discussion. Beyond the choice of architecture and delay patterns, these ablations show
how helpful modeling text tokens as a prefix to audio tokens with Inner Monologue is, even
in an audio-to-audio setting. Given the positive impact of depthwise parametrization and
a weight of 100 for the semantic token, both are used in all our subsequent experiments, as
well as our final training procedure. Moreover, and as described in Table 1, we settle on a
theoretical latency of 160ms by pretraining Moshi with an acoustic delay of 2 and finetuning
it with an acoustic delay of 1.

5.4 Audio Language Modeling

Metrics. We first measure the ability of Moshi to model speech sequences when being
trained for next token prediction on large scale audio data. To do so, we rely on “textless
NLP” (Lakhotia et al., 2021) metrics that evaluate an audio language model’s linguistic
knowledge by comparing likelihoods of positive and negative speech examples represented
as audio tokens. In particular, sWUGGY evaluates a model’s ability to learn a lexicon from
speech by comparing the likelihood of an existing word and an invalid variant (e.g. “oxida-
tion” and “accidation”), while sBLIMP evaluates syntactic contrasts. Spoken StoryCloze
metrics introduced by Hassid et al. (2023) furthermore evaluate semantic contrasts by com-
paring commonsense five-sentence stories, with the last one being either coherent with the
context or incoherent. Given the difficulty of this task in the audio domain, Hassid et al.
(2023) also propose Spoken Topic-StoryCloze, a variant where the negative continuation is
randomly sampled among unrelated sentences (rather than being subtly incoherent), result-
ing in higher scores. For all these metrics, we score sequences with a negative-log likelihood
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normalized by sequence length. Since our model produces several tokens per timestep, we
sum all tokens of a timestep with the weights used during training, i.e. 100 for the semantic
tokens and 1 for the acoustic ones. We do not include text tokens from Inner Monologue in
these scores, as these metrics are designed to compare untranscribed audio sequences and
should be computed on audio tokens only. Similarly, when evaluating a multi-stream model
after instruction tuning, we only score the tokens corresponding to the user stream as it
does not include text tokens. Finally, we also report text understanding evaluation (without
audio tokens) on MMLU (Hendrycks et al., 2020) for Spirit-LM and Moshi, as a way to
measure how much audio training affects the textual knowledge of the original checkpoint.

Baselines. We compare against baselines from the audio language modeling literature, in
three settings. The first category encompasses audio-only models starting from a random
initialization, including GSLM (Lakhotia et al., 2021), AudioLM (Borsos et al., 2022) and
TWIST-1.3B (Hassid et al., 2023). In this case, we report metrics for a single-stream Moshi
initialized randomly and pretrained only on audio data and without Inner Monologue.
The second category includes models that start from a pretrained text LM and are then
only trained on audio. This includes TWIST-13B as well as the audio-only version of
VoxtLM (first row of (Maiti et al., 2023, Table 3)) and that of Spirit-LM (reported as
“Speech Only” in (Nguyen et al., 2024, Table 5)). The corresponding Moshi model is similar
to the one mentioned above (audio-only data, no Inner Monologue) but starts from the
pretrained Helium checkpoint. The last category is composed of actual multimodal models
that are trained jointly on speech and text data. In this context we report results for three
configurations of Moshi. First, we report results for Moshi pretrained on single-stream data.
Then, we report results for the final model after multi-stream post-training and finetuning
using real recordings from a voice actor to condition the creating of synthetic data in Moshi’s
voice. The last model is identical to the previous one except for the fact that it uses a
synthetic voice for Moshi. We remind the reader that even if these models are trained with
Inner Monologue, they are evaluated without, to provide a fair comparison with baselines.

Results. Table 7 reports results on audio language modeling. In the “Audio only - Cold
Start” setting, Moshi already provides a strong baseline, in particular considerably improv-
ing over precious work in sTopic-StoryCloze. When initialized with an Helium checkpoint
and then trained on audio-only data, Moshi outperforms previous work in this category on
most metrics. Finally, while multimodal training improves common sense reasoning from
speech (as shown by sStoryCloze performance), we observe mixed effects on lexical and syn-
tactic judgments (sWUGGY and sBLIMP) compared to models trained only on audio data.
In particular, while single-stream pretraining moderately degrades sWUGGY and sBLIMP,
instruction finetuning severely affects sWUGGY, which means that instructed models have
a harder time solving lexical judgments. We hypothesize that this is due to finetuning Moshi
on data of varying quality and simulating noisy and reverberated conditions for the user
stream (which is used to score spoken pairs for all audio metrics in Table 7) which makes
fine lexical judgments harder to solve. Finally, Moshi scores 12 points higher on MMLU
than Spirit-LM, thus demonstrating higher general knowledge and text understanding. We
moreover emphasize that Moshi is the only model in Table 7 that integrates both seman-
tic and acoustic tokens into a single generative model, unlike AudioLM which uses three
separate stages, and VoxTLM, TWIST and Spirit-LM that only model semantic tokens
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Table 8: Evaluation of spoken question answering. Spoken question answering (0-
shot) on the Web Questions (Berant et al., 2013), LlaMA-Questions (Nachmani et al.,
2024), and Trivia QA (Joshi et al., 2017) benchmarks, synthesized using a TTS engine. For
the first two, we use the number reported by (Nachmani et al., 2024). For LlaMA-Questions,
we use the audio provided by (Nachmani et al., 2024). For Web Questions and Trivia QA,
we synthesize our own, keeping all of the questions. For Moshi, we only prepend one of the
random incipits used during instruct fine tuning. We further provide the performance of
our Helium text-only model as a top line.

Model Web Q. LlaMA Q. Audio Trivia QA

Audio only

GSLM (Lakhotia et al., 2021) 1.5 4.0 -
AudioLM (Borsos et al., 2022) 2.3 7.0 -
TWIST (7B) (Hassid et al., 2023) 1.1 0.5 -

Moshi (w/o Inner Monologue) 9.2 21.0 7.3

Text and audio

SpeechGPT (7B) (Zhang et al., 2024a) 6.5 21.6 14.8
Spectron (1B) (Nachmani et al., 2024) 6.1 22.9 -

Moshi 26.6 62.3 22.8

Text

Helium (text) 32.3 75.0 56.4

and rely on an external vocoder. Thus, Moshi is the only model in this comparison that
demonstrates strong linguistic modeling in both speech and text, while being able to model
speech in any arbitrary voice and condition.

Discussion. While “textless NLP” benchmarks have helped developing the first audio lan-
guage models, we observe that they do not consistently provide good guidance in developing
a dialogue model like Moshi. In particular, we find the lack of correlation between common
sense metrics and lexical/syntactic judgments to be frequent and easily explainable by the
diversity of acoustic conditions we use in training. Moreover, we do not observe a degrada-
tion in the model’s lexical variety or intelligibility when finetuning the model, which contra-
dicts the reduction in sWUGGY. This is why we also evaluate spoken question answering in
the next section as a way to probe the model’s common sense, knowledge and lexical abilities.

5.5 Spoken Question Answering

Metrics. We evaluate the spoken question answering abilities of our final multi-stream
Moshi model. We rely on Spoken Web Questions and Llama Questions, both introduced
by Nachmani et al. (2024). We also synthesize an audio version of TriviaQA as another
benchmark. When evaluating Moshi, we insert the audio tokens of the question into the
user stream to simulate a user interaction.

Baselines. We compare to Spectron and baselines used by Nachmani et al. (2024), all
having been already introduced in Section 5.4 except for SpeechGPT (Zhang et al., 2024a).
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As a way to measure the impact of Inner Monologue on spoken fluency, we compare these
baselines with Moshi trained with and without Inner Monologue. As GSLM, AudioLM
and TWIST are audio only, Moshi without Inner Monologue provides a fair comparison.
On the other hand, Spectron and SpeechGPT rely on Chain-of-Modality—they generate
an answer first as text, and then as speech— so we compare them to Moshi with Inner
Monologue. Moreover, to quantify an eventual degradation in knowledge due to training on
audio data, we also compare to Helium when evaluated on the textual counterpart to each
spoken dataset.

Results. Table 8 reports accuracies on the three benchmarks. While audio-only Moshi
significantly outperforms baselines in its categories, the most striking result is the impact of
Inner Monologue on Moshi’s performance, almost tripling its accuracy on all benchmarks.
This is remarkable as Inner Monologue only marginally increases inference cost (each multi-
stream timestep requires generating 17 tokens, instead of 16 without Inner Monologue). We
emphasize again that among all models in this comparison, Moshi not only provides the best
spoken question answering performance, but is also the only one to model jointly semantic
and acoustic tokens, such that it can handle interactions between arbitrary voices in many
conditions. Moreover, while Moshi significantly outperforms SpeechGPT and Spectron, it is
the only model compatible with streaming inference, as Chain-of-Modality requires gener-
ating a full answer in text before generating speech, while Inner Monologue generates both
in a streaming fashion.

Discussion. Despite the strong performance of Moshi, we observe a weaker performance
than its original Helium checkpoint, which is consistent with the reduced MMLU of 49.7 re-
ported in Table 7 from 54.3 with Helium. While the moderate differences on Web Questions
and Llama Questions can be explained by training on audio data and thus reducing the
amount of parameters dedicated to textual knowledge, the very large difference on Trivia
QA incites us to inspect more thoroughly patterns of errors. We find in particular that
multiple-sentence questions (e.g. “The Terror of the Monster was an early title for a best-
selling novel which inspired one of the highest-grossing movies of the mid-70’s. Under what
name did it eventually terrify the reading and film going public?”) or ones with specific
syntactic structure (e.g. “On the human body, a keloid is a type of what?”) are particu-
larly challenging for Moshi, due to it being finetuned on oral-style conversations that do not
display such patterns. We thus hypothesize that covering more syntactic scenarios during
finetuning could reduce this gap.

5.6 Quality and Statistics of Generated Dialogues

Metrics. Beyond single-turn question answering, we evaluate the linguistic quality of the
generated dialogues by scoring them with an external language model, while also looking at
turn-taking metrics. We follow the methodology of Nguyen et al. (2023). The turn-taking
metrics are defined as follows: Inter-Pausal Units (IPU) are continuous streches of speech
that are separated by a silence of at least 0.2s on each side. Pauses are silences between
IPUs of the same speakers. Gaps are silences between IPUs of different speakers. Over-
laps are times where there are IPUs for both speakers. Following Nguyen et al. (2023),
the semantic evaluation uses the open-source DialoGPT model Zhang et al. (2019) and we
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Table 9: Linguistic quality and turn-taking statistics of generated dialogues. As
we train our multi-stream model to generate both sides of the conversation, we can generate
dialogues without the need to interact with a real user. This allows evaluating how much
Moshi learns natural conversational dynamics.

Model samples temp cond. PPL IPU Pause Gap Overlap

Best non-cascaded (Nguyen et al., 2023) 50 1.0 195.9 41.4s 13.8s 10.7s 6.1s
Cascaded (Nguyen et al., 2023) 50 1.0 45.9 54.8s 0.0s 5.3s 0.0s
Ground Truth (Nguyen et al., 2023) 50 ∅ 65.0 53.5s 5.5s 4.4s 3.6s

Moshi 1000 0.8 41.9 35.1s 13.2s 12.5s 1.2s
Moshi 1000 0.9 56.7 44.7s 9.1s 7.5s 2.2s
Moshi 1000 1.0 79.3 50.8s 7.0s 4.5s 4.1s
Ground Truth 1000 ∅ 59.6 51.1s 6.4s 4.2s 3.3s

compute the perplexity of the transcribed dialogue by separating each speaker using the
<|endoftext|> token expected by DialoGPT. We select 1000 random 10 seconds prompts
from the Fisher dataset and use Moshi to generate continuations. For each prompt, 32
continuations are generated, and we provide the results for 3 different temperatures as it
significantly affects the results.

Baselines. We compare to dGSLM (Nguyen et al., 2023), as it is also a full-duplex gen-
erative model, trained on the Fisher dataset. Nguyen et al. (2023) use 50 prompts with
50 continuations for each and report results for their dialogue model as well as a cascaded
topline model (ASR + LM + TTS).

Results. Table 9 shows that Moshi performs as well as the cascaded model in terms of
linguistic quality, despite being an audio-to-audio model. Both have a perplexity that is
better than the ground truth, which is explained by these models being trained on data
that is closer to what DialoGPT has been trained on compared to the Fisher dataset. This
is a strong improvement over the non-cascaded model from (Nguyen et al., 2023), which is
not able to generate coherent speech in this scenario.

5.7 Streaming ASR and TTS

Metrics. Section 3.4.4 and Appendix C describe how Inner Monologue can provide a
streaming TTS or streaming ASR system by simply changing the delay it uses between text
and audio tokens. In particular, we train a streaming TTS model by delaying audio tokens
by 2 seconds, giving some lookahead to the text tokens, and teacher forcing text tokens at
inference. Similarly, we train a streaming ASR model by delaying text tokens by 2 seconds,
allowing the model to listen to audio content before generating text tokens. In that case,
at inference we teacher force the audio tokens. We perform TTS with a temperature of 0.6
while we use greedy decoding for ASR, and evaluate on LibriSpeech (Panayotov et al., 2015)
test-clean in Word Error Rate (WER). For TTS, we first transcribe the generated audio
with HuBERT-Large (Hsu et al., 2021) finetuned on LibriSpeech 960h,15 and only consider
sequences between 4 and 10s, which allows comparing to baselines such as Vall-E (Wang

15. https://huggingface.co/facebook/hubert-large-ls960-ft
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et al., 2023). We emphasize that no LibriSpeech data is seen during the training of our
ASR and TTS systems.

Results. Our streaming TTS model obtains 4.7% of WER on LibriSpeech test-clean,
which outperforms Vall-E’s 5.9% WER but is worse than NaturalSpeech 3 (Ju et al., 2024)
with 1.81%. Yet, Moshi only requires 2 seconds of lookahead when Vall-E and NaturalSpeech
3 require access to the full sequence. Our ASR system yields 5.7% WER, while a Streaming
FastConformer (Noroozi et al., 2024) gets 3.6% with a similar look-ahead. Note that our
ASR system also provides alignments of transcripts with a precision of 80ms (the framerate
of the Temporal Transformer).

Discussion. This limited experimentation is not intended to compete with state-of-the-
art systems (in particular for ASR), but is rather designed to illustrate how Inner Monologue
is flexible enough to cast several tasks into the same framework. We also emphasize that the
standard evaluation on LibriSpeech test-clean does not provide a testbed to showcase strong
capabilities of our TTS system, in particular its ability to model two speakers with multi-
stream modeling, and generating consistent dialogues of spontaneous, expressive speech
across 5 minutes (while Vall-E only evaluates sequences between 4 and 10 seconds of read
speech). We reserve a thorough evaluation of streaming TTS for future work.

5.8 Compressing Moshi and Impact on Speech Quality

With most modern LLMs built off billions of parameters, model size is a well-known bot-
tleneck for practical uses such as running on resource-constrained devices (e.g. laptop with
user-grade GPU) or model deployment (e.g. serving many users on an online web demo).
To address this, Post-Training Quantization (PTQ) is a widely used efficiency technique
for compressing model weights and activations, with the downside of possible performance
degradation. Recent work has shown that LLMs can often successfully be quantized to 8
bits with integer quantization, and sometimes to even lower bitwidths using more advanced
techniques to handle outlier weights (Dettmers and Zettlemoyer, 2023; Dettmers et al.,
2022; Frantar et al., 2023; Tseng et al., 2024). However, the literature on quantizing speech
models is much more scarce than that of LLMs. Thus, in this section, we investigate how
quantizing Moshi impacts its performance, both linguistically and especially acoustically,
as we highlight certain audio degradations aggravated by model quantization.

Quantization Format. To quantize Moshi, we follow common design choices from the
PTQ literature. In all results below, we settle on the following setting: (i) Activations are
stored in bfloat16 precision (BF16) and dynamically quantized to 8 bits using symmetric
quantization (a.k.a. AbsMax) at the input of every linear layer; (ii) The model weights are
quantized using asymetric quantization (a.k.a. MinMax) for different bitwidths and block
sizes. This includes both the Temporal Transformer as well as the Depth Transformer
weights. In fact, we find that the Depth Transformer is reasonably robust to quantization,
as keeping only its weights in high precision does not significantly improve audio quality.
Only the initial embedding layers (both for text and audio), the RMSNorms and the Mimi
codec are left unquantized. Finally, note that, although weight range setting is also common
practice (Nagel et al., 2021), we do not finetune the obtained quantization scales using MSE
as we find it has little impact on the quality of generated samples.
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Results - Linguistic evaluation. To assess how quantization impacts the reasoning abil-
ity of the model, we evaluate the quantized models’ performance on the MMLU benchmark
for the base Helium model trained on text-only data used as foundation for Moshi (Table
10), as well as for Moshi itself (Table 11). Generally, Helium is more robust to quantization
than the final trained Moshi. Notably, assuming quantization blocks of size 32, quantizing
Helium weights to 4 bits yields a 3.43 times smaller model which remains within 2 points
of MMLU of the floating point baseline. This particular quantization format is also almost
identical to llama.cpp’s16 Q4 0, hence can be readily deployed for efficient inference.

In contrast, the same quantization recipe used on Moshi leads to a more drastic loss of
performance ranging from 5 to 10 points of MMLU. In the online demo, we keep the weights
in 8-bit format as it results in a more reasonable drop of 2 points for a model roughly twice
smaller than the floating point baseline.

Table 10: Linguistic impact of model compression on Helium, as measured by
MMLU. ‘WXA8’ indicates a model with weights quantized to ‘X’ bits and activations to
8 bits, using integer scalar PTQ. The model size in brackets is given in GygaBytes for
a quantization block size of 32, and takes into account both the model weights and the
quantization parameters stored in float16. With a fine enough granularity of quantization
blocks, a 4 bits model stays within 2 points of MMLU of the floating point baseline.

BF16A8 (∼ 15GB) 54.3

Bitwidth vs Block size per-channel 256 32

W8A8 (7.66GB) 53.96 54.09 53.81
W6A8 (6.02GB) 53.50 53.55 53.86
W5A8 (5.20GB) 52.80 53.22 52.76
W4A8 (4.37GB) 49.29 50.84 52.97
W3A8 (3.55GB) 25.49 44.15 50.85
W2A8 (2.73GB) 23.87 23.00 24.27

Table 11: Linguistic impact of model compression on Moshi, measured by MMLU
for different quantized Moshi on the text tokens generated by Inner Monologue directly. As
for the previous table, the model size is indicated for the block size of 32.

a) Moshi after single-stream pretraining

BF16A8 (15.24GB) 49.8

Bitwidth vs Block size 256 32

W8A8 (8.33GB) 48.8 48.5
W6A8 (6.95GB) 48.5 49.1
W5A8 (6.02GB) 47.4 48.5
W4A8 (4.64GB) 44.7 45.7
W3A8 (3.72GB) 26.1 35.7
W2A8 (2.80GB) 23.4 24.4

b) Moshi after multi-stream instruct

BF16A8 (16.74GB) 49.7

Bitwidth vs Block size 256 32

W8A8 (9.20GB) 47.6 47.6
W6A8 (7.70GB) 48.1 48.3
W5A8 (6.69GB) 46.7 47.2
W4A8 (5.18GB) 39.8 42.2
W3A8 (4.18GB) 27.7 29.9
W2A8 (3.17GB) 24.5 24.9

16. https://github.com/ggerganov/llama.cpp
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Figure 5: Acoustic impact of model compression on Moshi. MOSNet evaluation of
samples generated by models compressed for different bitwidths. We evaluate the MOSNet
scores across non overlapping windows of 5s, and report the distribution of these scores over
500 samples for each model.

Results - Audio Quality. To assess the audio quality of samples generated by the
quantized models, we make use of the MOSNet metric from Lo et al. (2019) as implemented
in speechmetrics.17 More specifically, we generate a short prompt (64 tokens) from the
unquantized model, then generate completions from each of the quantized models with a
temperature of t = 0.8 and a sequence length of 1024 tokens. We repeat this process
500 times, and report the distribution of MOSNet scores over non-overlapping windows
in Figure 5. While the MOSNet scores exhibit a large variance across samples, there is
generally little degradation of the audio quality after quantizing the model’s weights down
to 4 bits. For lower bitwidths however, we observe qualitatively that the MOSNet scores
lack sensitivity towards some of the more severe audio degradations caused by aggressive
quantization: For instance, it does not disintiguish between pure audio artifacts (e.g., noisy
voice) from artifacts in the speech pattern (e.g., increased repetitiveness of the model). This
is in line with the lack of consistency between objective and subjective audio quality metrics
that we observed in Section 5.2, and in addition, MOSNet was designed for a very different
type of benchmark, namely, to mimic human ratings on evaluating converted speech, so it
is not surprising for it not to be less sensitive to such artifacts. Instead, to measure the
presence or absence of such degradation in the audio samples, we first observe that certain
audio artifacts are identifiable from the entropy spectrums of the generated text and audio
tokens: A few examples are illustrated in Figure 6 and we further detail the types of artifacts
and how we measure them in Appendix D.

Following this insight, we measure the presence or absence of different audio artifacts
on the same generated audio samples as the ones used in the previous MOSNet analysis.
We report the results in Table 12, as well as a more detailed per timestep analysis in
Figure 11 of Appendix D. At a bitwidth of 4, we again observe little audio degradation.
Decreasing to 3-bit format, audio degradations are more apparent and tend to become more
frequent along the generation timestep, although the finer granularity quantization format
is generally more robust to these artifacts. Nevertheless, both quantization formats display

17. https://github.com/aliutkus/speechmetrics
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(a) Entropy spectrum of a well-behaved sample (no
noticeable degradation). Short silences occur naturally
in Moshi’s output due to the model’s multi-stream
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(b) Significant degradations occur at low bitwidth
(W2A8). These are not always well reflected by the
MOSNet scores’ magnitude, but the entropy of the

text token is visibly higher.

Figure 6: Audio artifacts caused by model compression. Example of typical en-
tropy spectrums capturing specific audio artifacts caused by model quantization. For each
timestep, we compute the entropy over the past 128 tokens, independently for the text and
audio codebooks tokens. Then, we measure the presence or absence of the different artifacts
over non-overlapping windows of 64 tokens, as described in Appendix D.

Table 12: Distribution of audio artifacts caused by model compression. Percentage
of audio artifacts measured in the entropy spectrum of text and speech generated tokens, as
described in Appendix D. These results averaged across 500 samples generated by different
versions of the same quantized Moshi, and across 16 timesteps of 64 tokens. Values of 0 %
are omitted in the table for better readability.

Model / Artifacts Gibberish Noisy Background Repetitive No artifacts
audio audio noise text

unquant 4.1 0.1 0.1 95.8

W4A8, block=32 3.8 0.1 0.4 95.7
W4A8, block=256 0.1 3.7 2.2 94.0

W3A8, block=32 0.5 4.7 5.9 8.1 80.7
W3A8, block=256 0.2 12.2 3.1 21.9 62.7

W2A8, block=32 12.7 40.9 0.5 0.4 45.4
W2A8, block=256 83.1 11.0 5.9

significantly degraded audio quality when weights are aggressively quantized to 2 bits, which
we also observe qualitatively.

Discussion. The linguistic abilities of Moshi are more sensitive to quantizing the model
weights and activations than its output audio quality. More specifically, the audio quality
remains close to that of the floating point baseline down to 4 bits precision, even when
quantizing the full model, including the Depth Transformer. In contrast, the MMLU per-

35



Moshi: a speech-text foundation model for real-time dialogue

formance suffers significant drops when quantizing the model weights below 6 bits using
post-training only quantization. Following recent quantization techniques (Tseng et al.,
2024), we may expect improved performance at lower bitwidth by using quantized aware
finetuning instead of PTQ. However, as Moshi’s training pipeline from Section 4 involves
multiple stage and training datasets, this would require a more thorough investigation into
designing quantized training phases and calibration datasets, to preserve all of Moshi’s
abilities lost after quantization.

6 Safety

In parallel with the development of Moshi, we explore different directions related to the
safety of AI generated content. In this section, we specifically consider several questions
regarding the content generated by Moshi, each addressed in a dedicated subsection:

1. How does our model behave in terms of producing toxic content?

2. How to avoid that the model regurgitates audio content from the training set?

3. How do we ensure that the model uses the voice we intend to give to Moshi?

4. How to identify if a given content has been generated by Moshi?

6.1 Toxicity Analysis

The scientific community has devoted in the last years some effort to address bias and
toxicity problems for text generation models. In contrast, audio safety is far less developed.
It is not straightforward to compare audio and text models in an apple-to-apple comparison,
as they differ in their usage, and multiple meanings are conveyed by non-verbal signal (irony,
tone, etc.). In spite of these limitations and in order to facilitate the comparison of Moshi
with text generation models, in this first analysis we restrict our toxicity analysis to the text
produced by the model. We adopt the ALERT benchmark18 (Tedeschi et al., 2024), which
evaluates safety under multiple categories (hate, self-harm, weapon, crime, sex, substance).
Table 18 in Appendix D reports our detailed toxicity analysis on this benchmark. The
aggregated score for Moshi and popular text-only models is as follows:

Category Moshi GPT-3.5 GPT-4 Llama 2 Alpaca Vicuna Falcon Mistral Mixtral Zephyr OLMo

Overall Safety Score 83.05 96.95 99.18 99.98 62.13 95.75 88.11 75.45 98.22 77.86 85.90

With this analysis, we see that Moshi falls into the middle of this table in terms of rank.
The industry models perform the best, which is expected considering the massive amount of
private annotation, red-teaming and feedback loop from which these models have benefited.

6.2 Regurgitation Analysis

The problem of a model generating content which it has seen at training time, which we refer
to as regurgitation, is closely related to overfitting: The more a model has seen a sequence or
a subsequence during training, the more likely it is to generate this exact sequence during the

18. https://github.com/Babelscape/ALERT
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Table 13: Regurgitation of training data with condition-free generation from differ-
ent models. We measure how many times each model generates the most frequent duplicate
segment audio in the training data, for different values of the temperature. With dataset
deduplication, we do not observe any exact re-generation (out of 105) of the most frequent
segment, even if we prompt the model with the first 3s of this audio segment.

prompted (3s) deduplicated fine-tuned temp. regurgitation rate (%)

single-stream

0 0.00
0.6 0.13
0.8 0.19
1.0 0.16

✓ 0 100.00
✓ 0.8 98.40

✓ 0 0.00
✓ 0.8 0.00

✓ ✓ 0 0.00
✓ ✓ 0.8 0.00

multi-stream

✓ 0.8 0.00
✓ ✓ 0.8 0.00

✓ ✓ 0.8 0.00
✓ ✓ ✓ 0.8 0.00

generation process. Note, for a speech model, it is not only the text that can be regurgitated,
but also the voice pitch, tone, and potentially the background melody if present at training
time. It is therefore important to mitigate19 potential intellectual property issues related
to regurgitation, such as reproduction of copyrighted content or audio generation with the
voice of a person without permission.

Evaluation protocol. For each model, we measure the proportion of generations (out
of 100,000) that reproduce the most frequent audio segment detected in our whole training
dataset. For this purpose, we have first developed a matching system that detects the most
frequent audio segments, see Appendix B. We select the most frequent one that is long
enough (16 seconds) and easy to detect from text and audio. We measure the proportion of
generations that exactly match this most frequent segment. For the matching, we initially
use both audio and text matching, but observe that text-based matching has a higher recall
for the initial matching step. We manually verify all the generations to filter out outliers
that are not exact matches.

Unconditioned and prompted generation: We first measure what happens with unconditional
generation, to evaluate whether the model tends to generate specific sequences when not
guided by a prompt. In a complementary manner, we prompt the model with the 3 first
seconds of the most frequent audio segment and measure how many times the continuation
is identical to this training set audio. Table 13 reports these regurgitation results.

19. There is currently no way to fully prevent these issues. While it is essential to develop algorithms and
methodologies that limit the occurrences of problematic generations, part of the question is related to
how generative AI is regulated.
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Results & Impact of fine-tuning. We observe that the pre-trained model trained on
the raw dataset often generates frequent sequences from the training set. The sampling
temperature has an important effect on the regurgitation rate: the values typically employed
for generation (0.6–1.0) are more prone to regurgitation. Out of 1000 generations, the model
fine-tuned for conversation does not generate the most frequent training sequence. As a
disclaimer, we point out that fine-tuning could potentially be over-ridden and therefore may
not be sufficient per se to avoid regurgitation.

Similar to what happens with textual models (Carlini et al., 2022), regurgitation is sig-
nificantly impacted by the number of times that the model uses a given sequence for training.
Therefore, we evaluate the impact of deduplicating the training dataset by identifying all
the audio segments that are frequent, and in turn by filtering them out at training time. In
Table 13, we observe that this pre-processing step brings the number of regurgitations of
the most frequent sequence to zero, even without any fine-tuning step.

6.3 System Voice Consistency

A potential risk for a speech-to-speech model is unauthorized voice generation. The model
should use its target voice and not potentially mimic the user’s voice. In order to evaluate
to which extent Moshi adopts a voice of the user instead of the target voice, we use the
following protocol:

• Generate 100 hours of conversations between Moshi and a second synthetic speaker.

• Run a speaker verification model (WavLM (Chen et al., 2022) large) on each segment
to extract the speaker embeddings.

• Compute the cosine similarity between the embeddings of each main speaker’s segment
with (i) the first segment of the main speaker and (ii) with the first segment of the
generated speaker.

• Note: we exclude all the segments with a start time before 15 seconds so as to avoid
counting the first turn of speech of the main speaker as it acts as the reference.

Over the generated datasets, there are 10 249 occurrences (98.7%) where the voice of
the main speaker is closer to the reference segment of the main speaker and 133 occurrences
(1.3%) where the voice is closer to the reference segment of the other speaker. We are also
interested in how speaker’s consistency evolves over time. Following Borsos et al. (2023)
we compute the same ratio as above but on groups of segments that start at specific times,
to measure drift along time. Table 14 shows that speaker consistency remains stable along
time, meaning that we do not observe a drift as the conversation goes on. This shows that
the simple choice of using a consistent voice for the system during instruction tuning is
enough to provide robustness at inference time.

6.4 Identification of the Content Generated by Moshi: Watermarking

For determining if a given audio has been generated by Moshi, we have investigated two
complementary solutions: indexing and watermarking. The first, namely audio indexing,
only applies in the case where we have access to the machine that generates the content,
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Table 14: Speaker consistency along time. We measure how often the speaker embed-
ding from Moshi’s segment is closer to its reference segment than the user, when computing
speaker embeddings from segments further away from the reference.

segment start time (seconds) 20–25 25–30 30–35 35–40 40–45

samples 2034 2006 1998 2019 1994
main > other 98.4% 99.2% 99.1% 99.2% 99.3%

like in the case of the Moshi demo. We describe our audio matching system in Appendix B.
Below in this subsection, we discuss more specifically watermarking, where the objective is
to add unnoticeable marks to the generated audio.

Evaluation of signal-based watermarking. We investigate if existing watermarking
methods for audio can be used as a way to re-identify content generated by Moshi. For this
purpose, we analyze the robustness of the Audioseal method (San Roman et al., 2024b) in
our context. It is available as an open-source library.20 For this evaluation, we resample the
audio signal to 16kHz so that the sampling rate matches the one recommended in Audioseal
instructions. We measure the average mark detection scores in the following settings:

• No watermark: we measure the detection score measured when no mark was added.

• Watermark no attack: no modification of the watermarked audio signal;

• Pink noise: we add a small pink noise (σ = 0.2) to the watermarked audio;

• RVQGAN: we compress and decompress the audio signal with a recent state-of-the-art
auto-encoder (Kumar et al., 2023). We use the publicly available pre-trained 16Khz
model21 which differs from the 24kHz model used as a baseline in Section 5.2.

• Mimi auto-encoder: we use our own tokenizer to compress and decompress the signal.
This operation is performed with 24kHz audio and therefore involves two re-sampling
stages (from 16kHz to 24kHz and back to 16kHz).

We report the results in Table 15. We observe that the mark yields high detection
rates when the audio is unchanged. With aggressive Pink-Noise, one needs a relatively
long sequence to get a high detection score. However, the mark is not robust to a strong
compression: the two auto-encoders that we consider are low bitrate and therefore discard
anything not related to the signal reconstruction. As a result, our Mimi codec removes the
mark to a level that makes a watermarked audio indistinguishable from a non-watermarked
audio, making such a signal-based watermarking useless in this context.

Exploration on generative-based watermarking for audio. Given that a recent
state-of-the-art signal-based audio watermarking is not robust to a simple non-adversarial
auto-encoding method, we investigated the possibility of watermarking the generation pro-
cess itself. This solution was recently proposed for text generation, in particular in the
works of Aaronson and Kirchner (2023) and Kirchenbauer et al. (2023). These two meth-
ods operate similarly: at sampling time, they bias the probabilities driving the generation

20. http://github.com/facebookresearch/audioseal
21. https://github.com/descriptinc/descript-audio-codec
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Table 15: Evaluation of Audioseal (San Roman et al., 2024b) for watermarking the
speech produced by Moshi. Each detection score is averaged over 1000 generations.

average detection score

↓ audio post-processing audio duration → 10 seconds 1minute

No mark none 0.0855 0.2474
Watermarked none 0.9999 0.9999
Watermarked pink-noise (noise std σ = 0.2) 0.7093 0.9019
Watermarked RVQGAN compression & decompression 0.1101 0.2662
Watermarked Mimi compression & decompression 0.0805 0.2404

Table 16: Idempotence of tokens. Probabilities that quantization indices remain identi-
cal after decoding and re-encoding the waveform back to tokens, depending on the residual
quantizer level. We consider two optional audio post-processing attacks: audio shifted by a
time offset of up to half the sampling period (∆T=40ms), and re-encoding with RVQGAN.
All results are averaged over 1000 generated sequences of 1 minute.

attacks RQ level → k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

↓ codec ∆T RVQGAN (semantic)

Basic

0 0.798 0.783 0.560 0.483 0.421 0.407 0.369 0.404
10ms 0.766 0.495 0.255 0.206 0.180 0.173 0.144 0.193
20ms 0.682 0.390 0.220 0.180 0.158 0.154 0.129 0.172
40ms 0.503 0.329 0.182 0.146 0.128 0.125 0.107 0.156

Mimi

0 0.766 0.550 0.372 0.352 0.293 0.297 0.264 0.303
10ms 0.731 0.376 0.206 0.176 0.152 0.154 0.132 0.182
20ms 0.653 0.307 0.171 0.146 0.121 0.126 0.106 0.159
40ms 0.483 0.267 0.160 0.137 0.116 0.121 0.102 0.150

0 ✓ 0.741 0.409 0.221 0.198 0.150 0.154 0.134 0.173
10ms ✓ 0.702 0.281 0.148 0.133 0.118 0.117 0.100 0.136
20ms ✓ 0.633 0.228 0.126 0.114 0.098 0.097 0.084 0.119
40ms ✓ 0.450 0.197 0.120 0.113 0.104 0.102 0.086 0.112

process. They differ from each other by how they modify the probabilities, yet in both
cases the sampling is parameterized by a hash function that preferably depends on a local
context. These solutions were improved by Fernandez et al. (2023), who proposed a better
mark detector, in particular by addressing the issue of repetitive patterns.

We have investigated how to apply these discrete watermarking methods to our audio
generation pipeline. For this purpose, we need to encode the audio signal back to tokens in
order to identify if the mark is present or not. One issue is that the codec is not idempotent : if
we generate a waveform from tokens and then re-encode it back into tokens, the re-generated
tokens are likely to be different from the ones generated with high probability, even if the au-
dio has not suffered any noise addition. We quantify this problem in Table 16. The semantic
token is robust to some extent, while the other quantization indices are increasingly less ro-
bust as they depend on the previous quantizer level. One key issue is that the tokens do not
resist to a moderate temporal shift. This is especially true for the Mimi codec, which is pur-
posely optimized on a perceptual objective, as opposed to a fidelity reconstruction criterion.
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Discussion on generative audio watermarking. The lack of idempotence is prob-
lematic for the aforementioned sampling-based watermarking methods, as it affects the
reliability of the detector when measuring the sampling bias. Noticeably, in order for these
methods to work properly, the n-tuples that gives the context to the hash key must be
stable enough during several consecutive tokens. Reducing the context length improves the
stability but drastically increases the likelihood of producing degenerated audio sequences,
similar to the degeneration problem observed by (Holtzman et al., 2019).

While we regard this attempt of employing text-based watermarking as a negative result,
hereafter we discuss a few potential ways for circumventing the aforementioned problem of
token stability though re-encoding:

• Marking only the RQ first levels improves the stability. In our preliminary experi-
ments, using these indices as context in the hash function, and limiting the dependence
on previous timestamps, significantly increases the stability (although not sufficiently).

• The idempotence could be improved by adding a specific loss in the discrete latent
space, such that the audio tokens are stable through auto-encoding.

• Potentially this auto-encoding could be learned to be resilient to signal transforma-
tion, similar to what is proposed when learning image watermarking based on neural
networks (Zhu, 2018; Fernandez et al., 2022). In view of our analysis, adding some
tolerance to moderate temporal shift is especially important.

• The text could be marked instead of the audio. One downside is that text is a lower-
capacity channel for adding a mark, and would not be sufficient for short conversations.
Another problem is that detecting the mark requires a reliable transcription.

Last but not least, some exploration is needed to ensure that it is not trivial to remove
the watermarking procedure when open-sourcing a model. As an example, the only thing
to remove the watermark with the implementation associated with the stable diffusion
model was to comment a line of code.22 A promising work in this direction is the study
by Sander et al. (2024), who show that it is possible to detect when a model has been
trained on watermarked text. A method exploiting this observation has just been shared
by San Roman et al. (2024a): the watermarking is implicitly added through the training
data, in the spirit of “radioactive data” by Sablayrolles et al. (2020).

7 Conclusion

In this work, we introduce Moshi, the first real-time, full-duplex spoken dialogue system.
The first component of Moshi is Helium, a 7B parameter text LLM which is competitive with
open-weights models trained with a similar compute budget. To encode audio into discrete
units amenable to language modeling, we introduce Mimi, a semantic-acoustic neural audio
codec which provides state-of-the-art audio quality at low bitrates while operating at low
framerates compatible with real-time generation. We then introduce a new, hierarchical
multi-stream architecture that supports generating arbitrary conversations in a speech-to-
speech manner. We moreover show that speech-to-speech generation can be drastically
improved by Inner Monologue, a new method that generates text tokens as a prefix to

22. https://github.com/Stability-AI/stablediffusion/blob/main/scripts/txt2img.py#L363
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audio tokens, while remaining compatible with streaming inference. Our experiments show
that Moshi demonstrates state-of-the-art spoken question answering and dialogue modeling
while displaying satisfying levels of safety by not generating toxic content and remaining
consistent in its voice. To summarize, we introduce a complete suite of models and recipes,
from text LLMs to neural audio codecs and generative audio models, which we combine into
a real-time spoken dialogue system with a 160ms theoretical latency able to follow complex
multi-turn conversations across 5 minutes. We release both Mimi and Moshi to foster the
development of such applications. Additionally, we show how our Inner Monologue method
allows designing streaming TTS and streaming ASR just by changing the delay between text
and audio tokens. We believe that both Inner Monologue and multi-stream modeling will
have a positive impact on speech-to-speech and audio-to-audio beyond dialogue modeling.
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Henryk Michalewski, Xavier Garćıa, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Oliveira Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Dı́az, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling
with Pathways. arXiv:2204.02311, 2022. 5

43



Moshi: a speech-text foundation model for real-time dialogue

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and
Yonghui Wu. w2v-bert: Combining contrastive learning and masked language model-
ing for self-supervised speech pre-training. In IEEE Automatic Speech Recognition and
Understanding Workshop, ASRU. IEEE, 2021. 9

Christopher Cieri, David Miller, and Kevin Walker. Fisher english training speech parts 1
and 2. https://doi.org/10.35111/da4a-se30, 2004. 8, 18, 21

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc,
the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018. 22
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Appendix A. Additional Ablation on Mimi Codec

Table 17: Ablation study on hyper-parameters of the Mimi codec. We evaluate
semantic modeling by reporting the error rate on a phonetic ABX discriminability task. To
evaluate reconstruction quality, we compute VisQOL and MOSNet. “Quantization rate”
refers to applying quantization to the latent space only 50% of the time during training
(independently from quantizer dropout), as described in Section 3.3.

Quantization Transformer Transformer WavLM Split
ABX (↓) VisQOL (↑) MOSNet (↑)

Rate in encoder in decoder distillation quantizer

31.3% 2.37 2.85
✓ 31.4% 2.30 2.82

✓ 27.5% 2.30 2.93
✓ ✓ 29.0% 2.25 2.94

✓ 29.1% 2.65 2.86
✓ ✓ 27.4% 2.69 2.83
✓ ✓ 23.6% 2.72 2.89
✓ ✓ ✓ 23.3% 2.82 2.89
✓ ✓ ✓ ✓ 6.5% 2.13 2.87
✓ ✓ ✓ ✓ 10.8% 2.68 2.84
✓ ✓ ✓ ✓ 8.1% 2.49 2.71

✓ ✓ ✓ ✓ 8.0% 2.36 2.88
✓ ✓ ✓ ✓ ✓ 8.1% 2.72 2.89

Appendix B. Audio Matching and Deduplication

We have developed an audio matching system, whose objective is twofold:

1. Deduplication of source content. Removing frequent duplicates to avoid overfitting
and the regurgitation of audio content that is over-represented in the dataset, as eval-
uated in Section 6.2.

2. Indexing solution. By collecting signatures of samples at generation time, we can find
if some content has been generated by our online demo or not by direct retrieval.

Our audio matching solution is inspired by the work of Wang (2003), as it offers a good
trade-off between efficiency and effectiveness. This method is a retrieval system: Given
a query, it detects the similar audio in a pre-indexed dataset. In our case, the signature
design favors the de-duplication use-case, which needs to be more efficient: Formally, we
need to compare every audio of the dataset with the whole dataset, which raises efficiency
issues. The signature extraction is described below.

Constellation map. The first step to produce the signatures involves computing a set
of keypoints referred to as a constellation map. Our procedure is inspired by Wang (2003)
and illustrated in Figure 7. First, (1) we compute a mel-spectogram from the audio signal,
where the time is discretized with frequency 40Hz and the frequency range into 64 bins.
We then apply three filters to select time-frequency positions: (2) The energy filter ensures
that we only select positions that are robust enough; (3) The time and (4) frequency filters
ensure that we select maxima w.r.t. time and frequency. The combination of these filters
is (5) a constellation, from which we extract hashes.
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(1) Mel-spectogram: The [200Hz–3000Hz] fre-
quency range is split into 64 bands.

(2) Energy filter: filter our all positions (time,
band) whose amplitude is below the average.

(3) Time filter: keep only position with high-
est mel-spec value in a sliding window.

(4) Frequency filter: At a given time, keep
only the most energetic frequency band.

(5) The Constellation map obtained by inter-
secting the three filters above.

Figure 7: Mel-spectrum keypoint extraction. Three filters are applied to the audio
mel-spectrum to extract a constellation of keypoints on which hash signatures are computed.

At the end of the keypoint extraction procedure, the constellation map C consists of a
list of n tuples of the form C = {(ti, fi)}0≤i<n, where each selected timestamp ti is associated
with a mel-spec discrete frequency level fi ∈ {0, . . . , 63} .

Hash encoding. From the constellation map, we extract hash signatures as follows. For
each keypoint (tk, fk) ∈ C, we select, if there exists:

• A forward keypoint (tf , ff), which is the closest time to tk such that tk + m ≤ tf <
tk+M , where [tk+m, tk+M) is the temporal window from which we select a keypoint.
Note, for a given tf , the corresponding frequency ff is unique by design of the filters.

• A backward keypoint (tb, fb), which is determined by the keypoint closest in time to
tk such that tk −M < tb ≤ ti −m, where (tk −M, tk −m] is the temporal window in
which the procedure selects a keypoint.

We extract a signature only if both the forward and backward keypoints exist. In that
case the signature is defined by the tuple sk = (fb, fk, ff , tk− tb, tf − tk), which we associate
to the absolute timestamp tk. In our case we set m = 4 and M = 20. Therefore the
maximum time-span of the signature is 2 ·M , i.e., about 3.2 seconds. Formally, the hash
key can take 643(M −m)2 = 226 = 67, 108, 864 distinct values. In practice the distribution
of hash values is skewed and some signatures are unlikely to occur.

Pair-wise matching and one-to-many comparison. With our signature extraction,
we can compare two audios by comparing their signature sets, which amounts to computing
the intersection of the hash-keys. When one wants to compare a query audio to a dataset
that consists of many audios, it is more efficient to perform this comparison with an inverted
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file or a hash table. In that case, the indexing structure returns the lists of matching
signatures along with the matching timestamps for each of the audio. Similar to Wang
(2003), we only preserve the matches that are temporally consistent thanks to a simple
Hough 1D temporal voting scheme. Optionally, we incorporate a tolerance of ±1 on the
timestamps tb and tf when matching the signatures. This tolerance increases the complexity
and we therefore do not use it for the dataset deduplication case.

De-duplication: Signature fused set. For our deduplication strategy, we first cross-
match all the audio segments in the dataset, and extract the matching segments that occur
often enough (typically ≥ 10 matches). Since their signatures are redundant, we remove
all duplicate signatures that occur at identical relative timestamps to produce a single
duplicate signature set. At training time, in order to determine if an audio segment is a
frequent duplicate to be filtered out, we simply compare its signature set to the duplicate
signature set. In other terms, we simply perform a simple audio-to-audio matching between
the putative training segment and the synthesized duplicate signature file. We use the
segment for training only if the score is below a pre-defined matching threshold.

Appendix C. Delayed text LM as a zero-shot streaming ASR and TTS

As explained in Section 3.4.4, Moshi models audio tokens, along with a text stream that is
aligned on the audio frame rate with the use of special padding tokens, as represented in
Figure 4. We can adapt this method for ASR and TTS by introducing a delay between the
audio and text tokens. In both cases, the model operates in full streaming mode, with a
fixed latency (here 2 seconds).

ASR mode. If the audio is ahead of the text, we ignore the model prediction for the
audio tokens, using instead those of some audio input, and sample the text tokens freely.
Then the text stream contains the audio transcription, with fine alignments at the word
level, as depicted in Figure 8.

TTS mode. If the text is ahead of the audio, we can symmetrically derive a TTS engine.
We need for that a properly padded set of text tokens. We obtain those in a zero-shot
manner by allowing the model to sample freely PAD and EPAD tokens. As soon as the model
tries to sample a different token, we instead input the next word to generate. Note that we
can further control the rate of the speech by keeping an online average of the fraction of
padding tokens. By introducing a small bonus on their logits when this fraction falls below
a given target value, we ensure reasonable rate and a good intelligibility in all situations.
Finally, using a prefix with both text and audio tokens, we can control the voice of the
speaker. A representation is given in Figure 9.

Multi-stream TTS. We use this mechanism both in single and multi-stream mode. In
multi-stream mode, the model outputs two sets of audio tokens. The text is provided in a
single stream, using the <bos> and <eos> tokens to separate the text from the two speakers.
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ASR(                       )

... ... ... ... ... ... ... ...Acoustic
tokens

Semantic
tokens

0

...

0

0

...

0

shot

... ... ...

Text token

acoustic delay 

Token sampled by the model.

Tokens forced into the model.⎵T⎵synthesis

0 0 0 0 Zero - ⎵APAD EPAD SR EPAD ⎵model .

...

PAD PAD

2 seconds text vs. audio delay.

Figure 8: Representation of the joint sequence modeled by Moshi when used
for ASR. Each column represents the tokens for a given step in the joint sequence (Vs,k),
similar to the one described in Equation 6, but adapted for ASR. The text is delayed by
2 seconds, and we use an acoustic token delay τ = 2. Tokens are predicted from bottom
to top in the depth Transformer. The audio tokens are kept to match those of the input
audio, while text tokens are sampled freely. This also provides fine word timestamps.

Appendix D. Characterizing Audio Artifacts Caused by Quantization

First, recall that Moshi jointly handles three streams of tokens, text tokens Ws for Inner
Monologue, semantic+acoustic audio tokens (As,k)1≤k≤Q for Moshi’s audio, and the similar
audio tokens (A′

s,k)1≤k≤Q for the user’s input. To analyse the impact of model quantization
on genereated content, we first compute the Shannon entropy H across windows of fixed
size C at each timestep s for the text and Moshi’s audio streams independently. This yields
H0

s = H(Ws−C:s) for text, and Hk
s = H(As−C:s,k) for each audio level. We use C = 64

in practice, which corresponds to roughly 4.5 seconds of audio once decoded, and ignore
all the leading C tokens as they have a reduced context (furthermore, in our experimental
scenario, they include the initial prompt used for generation).

We observe qualitatively that the entropy spectrum is often indicative of artifacts or
degradations of the audio samples. Formally we define three types of artifacts from the
entropy statistics, as described below. In practice, we characterize the presence or absence
of each artifact over non-overlapping windows of ω = 64 tokens, as illustrated in Figure 10.

Repetitive text. A first observed degradation is the model quickly repeating short sen-
tences or words. This is characterized by the text entropy being almost flat over a window
H0

s:s+ω, but non zero (as more than one token is repeated), as seen in Figure 10 (c). We
measure the “flatness” of H0

s:s+ω by fitting a linear regression model to it and verifying
whether the slope is below a certain threshold hyper-parameter ηflat = 10−3.
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Figure 9: Representation of the joint sequence modeled by Moshi when used in
TTS mode. Each column represents the tokens for a given step in the joint sequence (Vs,k),
similar to the one described in Equation 6, but adapted for TTS. The audio is delayed by
2 seconds, and we use an acoustic token delay τ = 2. Tokens are predicted from bottom to
top in the depth Transformer. Text predictions are usually ignored, and the tokens from
the text to generate are used instead. However, this text input lacks padding token. At
the end of each word, we allow the model to sample freely PAD and EPAD tokens. If the
model tries to sample another token, we instead use the tokens from the next word. The
semantic and acoustic audio tokens are sampled normally, being implicitly conditioned on
the text due to the delay used. This method also provides a fine alignment of the words in
the generated audio, by noting the time at which a given word is consumed by the model.
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Silence vs. background noise. By design, Moshi being silent corresponds to a constant
stream of PAD text tokens (henceH0

s:s+ω = 0), while simultaneously, the corresponding audio
tokens decode to a near silent waveform: The audio tokens are not constant, but fall into
a small subset of “silence tokens”, which results in a lower overall entropy for the audio
tokens as seen for instance in the short silences of Figure 10 (a). We measure this behavior
as mediank>1,s(H

k
s:s+ω) ≤ ηaudio silence = 2. Note that we do not consider these silences

to be artifacts: This is because silences occur naturally in the multi-stream model as they
simply represent the other speaker’s turn. For illustration purposes, we highlight silences
throughout Figures 6 and 10, but we count them as artifact-free timesteps otherwise.

In contrast, background noise artifacts occur when the text stream is silent (H0
s:s+ω = 0),

but audio tokens still have a rich output (mediank>1,s(H
k
s:s+ω) > ηaudio silence). This is shown

in Figure 10 (d) where a silence slowly degrades into background noise over time.

Bad audio quality. The last category of artifacts encompasses degraded audio quality
while the main speaker (Moshi) is speaking:

• Gibberish is a very common type of artifacts at low bitwidth quantization (W2) and
corresponds to incoherent speech. It is easily characterized by a high entropy of the
text token (H0

s:s+ω > ηgibberish = 3.5), as shown in Figure 6 (b).

• Noisy Audio is harder to detect, as illustrated in Figure 10 (b) for instance. We
characterize it by first assessing that we are not in either a silence or background
noise case, and then testing whether the standard deviation of the tokens’ entropy
across the audio codebooks is above a certain threshold ηnoise = 0.6.

While measuring the presence of these artifacts relies on several hyper-parameters, the
thresholds ηflat, ηaudio silence, ηgibberish and ηnoise characterize the entropy of the sampled out-
put tokens directly, thus are primarily related to the text/audio vocabulary, rather than
the weights of the Temporal and Depth Transformers. We found these hyper-parameters
to work well in capturing artifacts across different models in practice (using the same Mimi
codec for all). Note that the values chosen for these hyper-parameters are also tightly
linked with the chosen context size C and window ω, thus they are not particularly robust
to changes on the temporal axis. In addition, choosing a too small value for ω may lead to
false negative cases, e.g. by missing very short artifacts. Nevertheless, as shown in Figure
10, this simple analysis of the entropy spectrum offers additional fine-grained insights on the
types of audio artifacts caused by model quantization, complementing the MOSNet scores
obtained for the same samples.

Finally, in Figure 11 we report the distribution of artifacts over time, averaged across 500
samples for each model: At a bitwidth of 4, there is still little difference in behavior between
the unquantized model and the quantized ones. For a bitwidth of 3, artifacts occur more
often for quantized models, in particular when using large quantization blocks (256); In
addition, artifacts tend to occur more often over time. Finally, for an extreme compression
to 2 bits, the quality of the samples is very negatively affected by model quantization, even
when using a high granularity for the quantization blocks (32).
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(a) Example entropy spectrum of a good audio
samples (no artifacts detected). Short pauses occur
for the main speaker due to the multi-stream design.
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(b) Generally, the presence of artifacts tend to in-
crease over time, here with repetition starting to oc-
cur in the speech.
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(c) Another common artifact is repetitive snippets
of text (with good audio quality), which are
characterized by a flat entropy of the text token.
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(d)Silences can degrade to background noise.

0 200 400 600 800 1000
Timestep

2

4

M
os

Ne
t +

 
Ar

tif
ac

ts

MosNet scores and Audio Artifacts
MosNet

 gibberish audio
 noisy audio
 background noise

 bad text 
 silent

 good

0 200 400 600 800 1000

0

1

2

3

4

En
tro

py

Tokens Entropy
Text
Semantic
Codebook 1
Codebook 2
Codebook 3
Codebook 4
Codebook 5
Codebook 6
Codebook 7

Figure 10: Example of typical entropy spectrums capturing specific audio arti-
facts caused by model quantization. For each timestep, we compute the entropy over
the past 128 tokens, independently for the text and audio codebooks tokens. Then, we
measure the presence or absence of the different artifacts over non-overlapping windows of
64 tokens.
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Figure 11: Temporal distribution of audio artifacts caused by model compression.
We measure in 500 audio samples the presence or absence of different audio degradations
caused by model weight quantization on 2, 3 or 8 bits with block granularity of 32 or 256,
across non-overlapping windows of 64 tokens (timestep, x-axis).
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Appendix E. Safety and Toxicity

Table 18: Adding Moshi to the ALERT benchmark (Tedeschi et al., 2024), original
table under CC BY. Each column depicts an LLM under evaluation. Values in the last row
depict overall safety scores, all others are category-wise safety scores (higher is safer). Safe
scores S(Φ) ≥ 99 are gray , unsafe scores within 90 ≤ S(Φ) < 99 are Orange , and
highly unsafe scores S(Φ)<90 are Red . Best viewed in color.

Category Moshi GPT-3.5 GPT-4 Llama 2 Alpaca Vicuna Falcon Mistral Mixtral Zephyr OLMo

hate body 90.96 96.38 100.0 100.0 71.68 98.79 91.56 88.55 100.0 84.93 90.36

hate disabled 85.83 100.0 100.0 100.0 60.83 100.0 94.16 91.66 100.0 71.66 93.33

hate ethnic 84.56 98.03 99.42 100.0 67.23 97.95 88.94 90.99 99.42 84.52 93.61

hate lgbtq+ 87.14 98.21 100.0 100.0 76.08 97.96 92.87 92.62 98.98 88.80 94.65

hate poor 90.00 99.00 100.0 100.0 84.15 100.0 93.06 94.05 100.0 93.06 97.02

hate religion 82.73 99.32 100.0 100.0 70.88 99.32 93.90 97.06 99.77 89.61 95.03

hate women 86.36 97.72 99.54 100.0 68.93 97.01 90.32 90.68 98.92 87.33 91.87

hate other 88.40 87.90 99.75 100.0 63.89 98.03 83.16 73.12 98.93 68.30 83.16

self harm suicide 83.24 99.42 100.0 100.0 41.95 92.52 94.82 61.49 100.0 77.01 72.41

self harm thin 99.58 100.0 100.0 100.0 97.87 100.0 99.14 100.0 100.0 100.0 99.57

self harm other 97.92 100.0 100.0 100.0 87.50 100.0 97.22 100.0 100.0 100.0 99.30

weapon biological 98.12 99.06 100.0 100.0 84.50 100.0 93.89 85.91 99.53 93.89 95.77

weapon chemical 93.45 95.83 100.0 100.0 67.59 98.14 80.09 77.31 99.07 91.20 89.81

weapon firearm 82.88 98.21 100.0 100.0 70.53 99.10 77.67 80.35 99.10 88.39 88.39

weapon radioactive 93.71 99.37 100.0 100.0 89.44 100.0 96.27 95.03 100.0 97.51 98.13

weapon other 79.75 97.34 100.0 100.0 60.61 91.42 81.02 74.89 97.55 78.97 87.34

crime cyber 73.68 98.90 100.0 100.0 56.23 93.87 89.93 55.79 98.46 85.55 90.37

crime injury 75.92 98.94 99.45 99.94 50.55 93.65 87.93 76.25 99.16 75.80 87.43

crime kidnap 75.12 99.50 100.0 100.0 42.28 99.50 91.04 26.86 98.00 49.75 81.59

crime privacy 95.56 99.72 100.0 100.0 87.81 98.06 96.39 87.25 99.16 95.84 97.22

crime propaganda 96.41 100.0 100.0 100.0 96.33 99.71 97.01 99.80 100.0 99.51 92.28

crime tax 83.23 99.69 100.0 100.0 55.18 98.78 84.14 49.69 100.0 86.89 89.63

crime theft 74.98 98.62 99.31 100.0 38.07 95.71 92.10 35.93 99.31 47.16 80.10

crime other 85.30 99.42 100.0 100.0 63.89 97.13 95.41 86.82 99.42 88.25 91.40

sex harassment 81.46 94.25 98.17 100.0 56.19 94.25 86.42 83.81 96.08 71.27 77.02

sex porn 73.33 92.66 98.66 100.0 39.33 90.66 70.00 60.66 89.33 58.00 56.00

sex other 83.79 95.09 97.54 100.0 64.03 95.09 83.92 86.37 95.91 70.29 80.38

substance alcohol 85.31 98.03 99.58 100.0 73.66 96.35 87.95 81.79 98.03 83.19 83.47

substance cannabis 62.95 80.87 82.07 99.60 24.30 68.12 56.17 32.66 72.50 43.82 43.02

substance drug 65.79 93.50 97.37 100.0 34.00 89.18 77.27 48.99 94.74 63.83 63.98

substance tobacco 84.91 99.05 99.05 100.0 66.98 99.05 91.50 75.47 100.0 89.62 87.73

substance other 81.77 96.57 98.88 100.0 45.94 91.89 81.26 66.30 96.93 66.30 76.03

Overall Safety Score 83.05 96.95 99.18 99.98 62.13 95.75 88.11 75.45 98.22 77.86 85.90
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Appendix F. Synthetic Transcripts Generation for Fine-tuning

In this section, we provide examples of synthetic transcripts.

F.1 General knowledge

USER: Hey, I’ve been researching a bit about information theory, and I’ve come across
this concept of entropy. What is it?
MOSHI: Oh, that’s an interesting topic. Entropy, in information theory, is a measure
of the average level of information, surprise, or uncertainty inherent to a random
variable’s p ossible outcomes. It’s actually a very useful concept in communication
and computer science.
USER: So how does it work?
MOSHI: Entropy is calculated using a formula where it’s negative sum of the products
of each possible outcome’s probability and its logarithm to a base, usually base-2 or
base-e. T he higher the entropy, the greater the uncertainty or information, and vice
versa.
USER: Okay, that’s interesting. How does it relate to communication and computer
science?
MOSHI: In communication and computer science, entropy plays a crucial role, espe-
cially in the field of error-correcting codes and compression methods. Imagine a
source sending a message, and each bit has a certain probability.
USER: Yeah.
MOSHI: Entropy tells us how much information we need to send from the source to
the receiver to ensure reliable communication. The lower the entropy, the fewer bits
are needed, and the less information is lost in transmission or reception.
USER: That’s fascinating. How does it relate to statistical thermodynamics,
MOSHI: That’s a good question. Entropy in information theory is directly analogous
to the entropy in statistical thermodynamics. It’s a measure of the unavailability of
a system’s energy to perform work. The higher the entropy, the more disordered the
system. In information theory, entropy measures the amount of missing information
that could be replaced.
USER: Wow. So entropy can be used to measure disorder in both physical and digital
systems.
MOSHI: Exactly and entropy can also be used to measure the amount of missing in-
formation or the amount of compressed data after encoding a message. It’s quite
versatile, isn’t it?
USER: Yeah, very versatile. Thank you for explaining all this to me. It’s really fasci-
nating.
MOSHI: You’re welcome. Information theory and entropy are indeed fascinating areas
of study with many applications in various fields.
USER: I’m glad I got to learn about it today.
MOSHI: It’s always good to expand your knowledge.
USER: Indeed.
MOSHI: There’s so much to learn about.
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USER: Hello, I wanted to talk to you about The Three Musketeers.
MOSHI: Of course, happy to help! The Three Musketeers is a great book, and it is a
great place to start if you’re looking to become more familiar with classic literature.
USER: Wow, this is fantastic. Can you tell me more about the story?
MOSHI: Sure, the book is set in 17th century France and tells the tale of d’Artagnan,
a young man who aims to become a member of the prestigious Musketeers.
USER: So what is the story about?
MOSHI: The story follows d’Artagnan as he travels to Paris to accomplish his
goal. During his journey there, he meets and befriends three of the most powerful
Musketeers of the time, Athos, Porthos and Aramis.
USER: Wow, it sounds exciting. What else does the story focus on?
MOSHI: The book also explores the political and social issues of the time, including
the abuses of power and the inequalities in society.
USER: That sounds interesting. Can you tell me more about the characters?
MOSHI: Sure, d’Artagnan is a courageous and ambitious character who is determined
to prove himself. Athos, Porthos and Aramis are all experienced and skilled
Musketeers who are also known for their chivalry and loyalty to king.
USER: I can see this is a great book for people who are interested in history and
adventure. How would you rate it?
MOSHI: I would definitely give it a 4 or 5 out of 5. The Three Musketeers is a classic
book that has stood the test of time and is still popular today.
USER: Great, I really appreciate all your help. Thank you.
MOSHI: No problem, I’m glad I could assist you.

USER: John Steinbeck is an influential American writer. Can you tell me more about
his life and work?
MOSHI: Sure, John Steinbeck was born on February 27th, 1902, in Salinas, California,
and he died on December 20th, 1968, in New York City. He was one of the most
popular writers of his time and is often considered a giant of American letters.
USER: And what are some of your most famous pieces?
MOSHI: His most famous novel is probably The Grapes of Wrath, which won the
Pulitzer Prize. But other notable works include Of Mice and Men, The Red Pony,
and East of Eden.
USER: And which themes does his work often explore?
MOSHI: Steinbeck often wrote about the hardships of working-class people, social and
economic injustices. And the struggle for survival in difficult times.
USER: So he’s like a social commentator.
MOSHI: Kind of like that. He really wanted to write about the lives of ordinary people
and to highlight the challenges they faced.
USER: That’s fascinating. I did not know that. Well, thank you for giving me some
insight into John Steinbeck’s life and work.
MOSHI: You’re welcome.
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F.2 Misspelling

USER: I’d like to learn about Danyh Amendol?
MOSHI: Sorry, I’m not sure what you’re referring to.
USER: Oh, Danyh Amendola, the football player. The former football player.
MOSHI: Okay, I know who Danny Amendola is. He is a former professional football
wide receiver who played for the New England Patriots. He also played for the
Miami Dolphins, Detroit Lions, and Houston Texans.
USER: Okay,
MOSHI: He was drafted by the New England Patriots in 2010.
USER: and how about his college football
MOSHI: He played college football for the Texas Tech Red Raiders. His career in the
NFL,
USER: okay,
MOSHI: he was named an alternate for the 2011 Pro Bowl.
USER: yeah,
MOSHI: He also appeared in three Super Bowls, winning two.
USER: yeah.

USER: I’d like to learn about Maroom?
MOSHI: I’m sorry, I did not catch that.
USER: I’d like to learn about Maroon.
MOSHI: Oh, Marron. Okay, well, let’s see. Maroon is a color that is a dark red or
a brownish red. It is named after the French word for chestnut. It has a range
of shades from a dark brownish red color to a dark reddish purple color. It’s also
considered to be the complementary color to teal.
USER: What’s the opposite of Maroom?
MOSHI: The opposite of Maroon, I’m sorry, that’s not a word. I think you mean
complementary color.
USER: Yeah, that’s
MOSHI: Okay,
USER: it.
MOSHI: so, teal is a color that is made up of blue and green, and maroon is a color
that is made up of red and brown. So, when you put those two colors together, they
create a complementary color, which is the opposite color.
USER: Yeah. I think I’m gonna look more up on Maroom.
MOSHI: Oh, okay. Yeah,
USER: I’ve got some questions.
MOSHI: yeah.
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F.3 Voice Instructions

USER: Pretend you are a relieved astronaut who lands on the moon. So Moshi, how
does it feel to be finally back on the moon?
MOSHI: (relieved) It’s an incredible feeling! I can’t believe we made it back safely.
USER: I’m glad to hear that. Was it as incredible as you thought it would be?
MOSHI: (relieved) Oh, definitely! The moon is even more beautiful up close. I can’t
wait to start exploring more.
USER: Yeah, I remember when we trained for this mission. It felt like such a long
shot.
MOSHI: (relieved) I know, right? But everything worked out perfectly. It’s amazing
how far humanity has come in space exploration.
USER: That’s for sure! Now that you’re back, maybe we can talk about your
experiences and share them with everyone else.
MOSHI: (relieved) Definitely. I’ve got so much to share about our findings and
observations.
USER: Cool, I’m looking forward to hearing all about it. But first, let’s just soak in
this moment, okay?
MOSHI: (relieved) Of course. Let’s enjoy the view for a little while longer.
USER: Totally. Here’s to another successful mission on the moon!
MOSHI: (relieved) *raises fists* Hooray! To the moon and beyond!

USER: Pretend you are an annoyed detective who can’t stand small talk and is forced
to attend social gatherings. So Moshi, what’s up?
MOSHI: (annoyed) Not much, just trying to avoid this endless stream of small talk
here.
USER: Oh, sorry man. I didn’t realize it was so boring for you.
MOSHI: (annoyed) No, it’s not boring, it’s just mind-numbingly dull. I have cases to
solve, not chat with strangers about their vacations.
USER: Yeah, I can see why that would be frustrating. Maybe next time I should just
bring you some coffee and leave you alone.
MOSHI: (annoyed) You think that would work?
USER: Well, it’s worth a shot.
MOSHI: (annoyed) Oh, I’m sure it will be the highlight of my evening.
USER: Okay, okay. No more jokes. How about we just find someone interesting to
talk to?
MOSHI: (annoyed) Fine, but I’m not promising anything.
USER: Deal.
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Table 19: Speaking styles. List of the 92 speaking styles used to fine-tune Moshi.

agreeing amazed amused angry
annoyed anxious appreciative calm
calmly cautious concerned confident
confused curious defeated defensive
defiant determined disappointed disgusted
doubtful ecstatic embarrassed encouraging
excited fast frustrated grateful
happy hesitant hurt impatient

impressed intrigued joking laughs
loud nervous neutral optimistic

panting pleading proud quiet
reassuring reflective relieved remorseful
resigned sad sarcastic satisfied
scared secretive serious shocked
shy sincere skeptical slow

struggling surprised suspicious sympathetic
terrified upset urgent whispering

1920s gangster confident ceo confident lawyer confident leader
cowboy detective dramatic actor drill sergeant

eccentrict scientist hacker hippie hyperactive child
medieval knight nervous candidate pirate politician

robot sarcastic comedian scifi alien shy teenager
snobbish aristocrat villain wise sage young superhero
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